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ABSTRACT

Properly analyzing logs in a large distributed environment is complicated. Modern log environments

require a multi-step process to collect, parse, index, and ultimately analyze logs. This process requires

human intervention throughout — a burden of labor and knowledge. Today tools like machine learning

seek to solve this problem, but that introduces further reliance on the log processing step; ultimately

making more work for engineers.

Implementing an large language model (LLM) to perform zero-shot anomaly detection (not requiring

correct parsing, index, and known good states — all the trappings of existing systems). The objective in

this research is to address the shortcomings of existing complex solutions that rely on time and knowledge,

fail to handle log formatting changes, and have too strict of tolerances for known states. LLMs are a

solution that is evolving significantly and can technically align with the requirements to find zero-shot

anomalies in logs, while side-stepping the issues found in current solutions. There are studies that explore

LLM-informed anomaly detection in adjacent fields, but for system and application logs this topic has not

yet been sufficiently explored.

Finally, looking forward to the future, standard systems must be developed. This should affect both

system design and analysis of log sequences themselves. By taking this step during the early phases of

LLM integration, engineers and researchers can keep the apace with the advancements in LLM

infrastructure as it becomes available and ultimately ensure that all logs are eventually audited.
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CHAPTER 1. Introduction

Logging environments can evolve into large clusters dedicated to a few common steps necessary to

proper logs handling: ingest and parsing, indexing, searching, and anomaly detection. Each of these

components begets the other. The nature of the logging ecosystem itself evolves as applications and

systems change — so does the log output.

Due to these circumstances it is desirable to create a flexible system to properly suss out logs of

interest. There is great advantages ranging from human time to business security in correctly identifying an

anomalous event within the mass of logs that any sizable environment will generate. To handle each

necessary step there are a variety of choices that offer a “turn-key” solution. Notable solutions in this space

are Elasticsearch1 and Splunk2. Each of these platforms seeks to alleviate the process of ingest, index, and

search. They typically have extensive services for anomaly detection.

Anomaly detection exists as a standalone field of study. The statistical conundrum of detecting the

needle-in-a-haystack can be addressed with a variety of methods, even ones geared for high dimensional

data (e.g. logs) [28]. These methods will often be implemented using deep learning techniques, resulting in

a neural network that can handle the task of locating relevant outliers.

1.1 Background on Log Systems

As logging system complexity grows there is an advantage to removing overhead wherever possible.

Common areas where deficiencies occur within logging systems are:

1. Log parsing. This is due to the shifting from the origins of the logs. Even in highly structured

environments such as Windows, the motivation to optimize the log size by including only relevant

fields versus the need to include all the relevant details, causes enough differential between logs to
1https://elastic.co
2https://splunk.com

https://elastic.co
https://splunk.com
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create errors during parsing. The results of the parsing will provide thousands of unique fields in a

centralized environment.

2. Human analyzing time and knowledge. Deep learning systems might offset the human time

requirements for analyzation, but ultimately there are some inescapable elements. The process of

correctly identifying an anomalous occurrence still alludes artificial intelligence. Also, the

identification of determining factors of anomalies remains soundly in the hands of humans. Both of

these elements are time and knowledge intensive — and will reoccur periodically due to natural

shifts in business systems and applications.

1.1.1 Traditional Logging Environment Architecture

Figure 1.1: A generic log system involving five common processes.

To describe the series of processing steps that logging environments typically provide, I will lay two

common types of scenarios.
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1.1.1.1 Centralized Collection and Search

In this setup, logs are collected using a series of centralization tools and then offered to the engineers

for searching by another tool that typically has indexed the logs for speed and reliability reasons.

1. Client generates log and submits to a network collector.

2. The collection tool parses the log and ingests it to the indexer.

3. The indexer defines field patterns and makes the log available within a larger dataset for the search

tool to begin searching.

This sequence is straightforward to maintain as each component can act independently of the other. A log

that is ineffectively parsed can still be searched in the search tool, albeit not as effectively.

1.1.1.2 Centralized collection and search with anomaly detection using deep learning

This extends the previous step by adding deep learning. It has the disadvantage of increasing

complexity and tethering the function of the neural network on the correct parsing of logs (step 2 above).

To implement the learning a fourth step is added:

4. Group and train a neural network on the logs to perform deep learning on patterns and formats.

There are some major advantages with this process. Newer research has offered solutions that back

feed the pattern discovery to the log parsing step and the advantage of having a neural network at the

disposal of the engineer for anomaly detection [16, 21].
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1.1.2 Traditional Log Processing Steps

Figure 1.2: Generalized log processing steps to take a set of raw logs to a useful training set for a neural network.

For optimal querying and neural network training purposes a typical log must be properly parsed. This

process can be as simple as identifying several key fields, but typically engineers prefer a fully labeled and

data typed log document (strings are surrounded in “”, integers are identified as such, etc.). Hamooni et al.

additionally, points out that data typing will help to ensure logs are correctly marked as similar to one

another. An example of log parsing is seen in Appendix A.1. Log parsing can happen as an online process

(occurring as step in the traditional flow — as shown 1.1) or offline, during the search phase (essentially: as

needed) [12, 21]. Once a log is parsed, it can be indexed. In a scenario involving a central repository, like

Elasticsearch, this would assign each field to a data type, allowing for a specific query utilizing that data

type. For example, a search can find field values containing a boolean for is-true, an integer value
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> 5, or etc. In a logging system that has parsed logs for proper indexing and searching — neural network

training can happen with fewer additional steps to modify the supplied logs.

At this point buckets for aggregations would need to be defined prior to the training process. Depending

on the model utilized, the aggregation might be enough [3, 14, 28]. If the network requires a known good

state, the designer would have to develop trust for ingested logs and their parsing — as well as trust that

there are not any anomalies already in place in the known good data that could poison future derivations.

1.2 Background on Deep Learning

Lupton et al. found that 84% of anomaly detection research papers utilized deep learning techniques

(compared to machine learning methods). This steep majority is indicative of the advantages of

implementing a neural network within a logging environment. Neural networks are a popular approach in

this area. The standard process to create an anomaly detection system would require a trained model,

preferably with a known good state, and then a method of comparison against this [3].

He et al. describes a few options for deep learning when data mining for anomalies in system logs.

They focus on features of log sequences, numerical and graphical. For numerical this involves statistical

rendering (seen in Bayesian discussion from the surveys by [3, 28]), either of things like event counts or

even thresholds for specific parsed parameters. Graphical features exist in a spatial relationship, using

algorithms like k-NN, effectively provide a measure of system state. Thudumu et al. described a similar set

of detection techniques in their survey, calling out these spatial approaches in terms of inliers and outliers.

This approach intersects well with LLM technology as the the underlying embedding technology relies on

a vector database to organize tokens3 relationships. Hadadi et al. points this out by explaining their logic in

pursuing fine-tuning techniques, a method to modify the underlying “word” relationships to better inform

the LLM.
3Embeddings are not a one-to-one relationship of word to token. This can be exploited to define a sequence of words as a single

token.
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1.3 Definitions

To anchor this discussion there are various terms worth highlighting with more context to how the

relate to this research.

1.3.1 Large Language Model (LLM)

I will refer to any pre-trained GPT-3 or greater model that offers the natural language interfacing

familiar to LLMs as an LLM. Later, I will reference “the LLM” as an abstract reference to a specific model

used during evaluation. LLMs are marked by their ability to handle human language, they exist as a subset

of AI, but are broadly referred to when society talks about “AI” today.

1.3.2 Context & Tokens

LLMs have several general constraints, the one encountered during this research centers around

context. This is a number assigned to the amount of knowledge that an LLM will work with at any one

time. This includes request queries and responses. This length is measured in tokens. Tokens are a method

of splitting inputs, typically around word boundaries, but not always. For example, Meta’s Llama 3.1

family of models has an between 3.17 to 3.94 characters per token [10]. For paid LLM services, tokens are

a method of charging for compute time.

Context is an evolving study within LLM research. Long length is required for applications described

in this research, but it is not yet clear how effective and successful this technique will be in the long run

[20].

1.3.3 Anomaly Detection

This research uses a very generalized approach to defining anomaly detection, put simply: a process of

finding an outlier within a data set. Given enough data the outlier(s) will always be pertinent. This is a

broad approach compared to Thudumu et al.’s survey, but similar to what Li et al. and Rivera et al. focus on

during their zero-shot approaches.
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1.3.4 Zero-shot Anomaly Detection

Unless specified, all discussion in this work regarding anomalies found during evaluations are assumed

to be zero-shot. Zero-shot occurs when no known state is established before a trained model is developed.

Esmaeilpour et al. defines this in terms of seen class labels and names — a successful zero-shot anomaly

detector will correctly categorize an unseen class sample as an outlier once it defines labels and names.

This research abides by that expectation as well.

It is important to point out the dynamic nature of a zero-shot anomaly detection result. To get a sense

of this for an applied definition, the research of Rivera et al. explains that every inlier group has a subset of

outliers. It is through this definition that the advantage of LLMs in a zero-shot anomaly detection

application becomes apparent.

1.4 Current Issues

1.4.1 Engineer Time & Knowledge Requirements

Current systems have a high complexity during initialization. This is due to the requirement of a known

good state [28] and the techniques of defining anomaly detectors. Machine learning and neural networks

can offset some of the analysis time and complexity, but only after logs are processed [27], introducing a

reliance on parsing and indexing (see Figure 1.2). In this case, success depends on dedication of engineer

time and knowledge – which is easily surpassed by the scope of software and evolution in logging sources.

He et al. points out that even in areas where an engineer is skilled with the software, they might not be

aware of things like hardware failures affecting operating system logging, thus anomalies go undetected.

1.4.2 Parsing Inconsistencies

Perhaps the most prolific area of research in log handling is parsing — after all many researchers focus

on this challenging problem, a number are included in this research, [11, 12, 14, 16, 21, 32]. Shifting log

formatting and previously unrecorded logs can wreak havoc on a structured system. Logs left unhandled by



8

automated analytics systems could lead to a forensic details gap and potentially a cybersecurity risk

[14, 27].

1.4.3 Reliance on a Known Good State

For training machine learning models and neural networks, a known good state must be established.

The risk of poisoning this is discussed in [3, 14] — embedding an inaccurate state into the normal data

would essentially result in an information gap and potentially a cybersecurity risk, similar to what is

discussed in Section 1.4.2. Addressing the false positives hearkens to the issues discussed in Section 1.4.1.

The larger a system grows the more diverse these problems become [32], and potentially become more

challenging for an engineer to detect and resolve issues.

1.5 Problem & Objective

Due to the nature of shifting log formatting and content the overhead of parsing maintenance is

significant. There are techniques to deal with, such as described by deep learning models and other similar

approaches in [12, 16]. Neural network training relies on successful metadata and parameterization on a

normal and suspect dataset to properly train — this creates significant overhead [21]. Large language

models present the opportunity to analyze data for anomalies with less domain specific training. Using

zero-shot anomaly detection methods a more reliable and thorough process could be developed using LLM

AI technology.

Problem Statement

Current logging systems rely on manual, machine learning, or neural networks systems to create rules

for anomaly detection. These systems are a burden to engineers and the security of the organization.

They are complex to configure and create additional dependencies on log parsing.
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Objective Statement

LLMs may meet the requirements to perform zero-shot anomaly detection in logs. A solution will be

offered in the form of a recommended system design and evidence provided for future research on the

topic. Long term achievements from this research can result in more reliable anomaly detection and

less human labor and time dedicated to log processing.

1.6 Research Questions

RQ1. Purpose of LLM in analyzing logs.

1. What anomalies should an LLM be expected to find in logs?

RQ2. Application functionality of LLM’s in anomaly detection.

1. Can an LLM provide reliable and useful results when searching for anomalies in logs?

2. How does an LLM fit within the log analysis ecosystem?

RQ3. System design for LLM anomaly detection applications 4

1. How would an LLM-informed system be designed?

2. Where are key areas to expect LLMs to play a role in log analysis pipelines?

I will offer context and background to inform each of the questions. In answering the questions I

provide assessment to the any shortcomings identified — with the goal of incrementally improving the

technology at hand. During my final discussion and conclusion I provide opinions derived from the

capabilities of the aforementioned anomaly detection as well as my background reading for the future

options of both domain specific LLM applications and general logging ecosystem integration of LLM,

specifically in regards to anomaly detection.

4Find this coverage in 5.5, there are no evaluations and results to cover with this topic, it will instead be a discussion portion
that is informed by readings, experience, and previous evaluation results.
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CHAPTER 2. Related Works

2.1 Current Practices in Logging & Log Analysis

He et al., provides a thorough analysis for the current state of affairs in system log analysis [14].

Similar to this research, the goal of their efforts is to stem the chaos from changing logging sources. The

researchers provide a detailed explanation for the complexity of relying on deep learning models, some of

which are called out above in Section 2.3.

Taking into account the complexities of growing logging systems, Svacina et al. describe a

shortcoming in log analysis research on both real-time and multi-source techniques [27]. These problems

are typically handled with machine learning, but as the researchers point out there are drawbacks, like the

ones listed in Section 1.4.2.

2.2 Parsing and Data Typing

Lupton et al. provides a survey of existing research in the online parsing field. They find that offline

processing research is relatively uncommon in recent research — and coinciding with the rise in online

parsing there is a plethora of deep learning research. A key finding offered in this survey is the increases in

parsing accuracy resulting from newly iterated methods. An example of this is Brain which algorithmically

develops a log parsing template utilizing a bidirectional parallel tree to iteratively breakdown the log

message [31]. This technique achieves an average parsing accuracy consistently in the 90% range.

Before a log document can be properly vectorized into an informed neural network, each field should

be parsed — resulting in each field and value with a data type (e.g., integer). Messages that are only

partially parameterized will hinder the overall functionality of the deep learning process. This parsing can

happen two ways: online will parse the logs as they are collected (see 1.1) or offline which will parse the

logs after they are stored (either during a query return another passive method) [21]. In 2016, Hamooni

et al. defined LogMine, a process for efficiently parsing logs without supervision. They rely on MapReduce



11

techniques to scale down memory usage significantly without losing performance. The MapReduce can be

performed by a worker; this allows for the system to scale horizontally and on the subset of well defined

logs the overall average parsing achieved 93% accuracy with millions of logs in throughput, but is

restricted to offline processing.

LILAC created by [16], seeks request log types from an AI (LLM or BERT model). This will query the

AI for missing information, creating a small caching system to reliably label log format types when

unidentified in broader system.

The success of effective log parsing has many avenues. Additionally in the past few years various

implementations of AI within the log ecosystem have been researched:

• LogDAPT is a ML model that does not require pre-trained or labeled data for training. Read closely,

this is described as “few-shot”, presumably it has a “warmup” period where the output is unreliable

as the model is training. This method only works offline [33].

• LogLens is an inline system that handles anomaly detection based on online log parsing. This relies

on a GROK parser and handles metrics-like data. Anomaly detection is performed against a set of

pre-defined rules. While the performance is worthwhile, the system itself is domain specific and

there is no indication it would perform reliable in dynamic environments [4].

• LogBatcher is an integrated log parsing system utilizing LLM to perform parsing matching where

the builtin patterns fail. The system design includes caching and other features that account of

performance and cost improvements. This system was designed using OpenAI’s resources, where

requests are charged per token, forcing the researchers to be mindful of their requests [30].

2.3 Anomalies and Anomaly Detection

Anomaly detection is a vast field. Both Thudumu et al. and Chandola et al. provide both taxonomies

and background on effective methods to find anomalies. Specifically, Chandola et al. focuses on statistical

and early deep learning approaches and Thudumu et al. provide a survey of techniques with large and high

dimensional data.
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In applied forms, anomaly detection in logs traditionally relies on a variety of parsing and neural

network training techniques. A good example of a “cutting edge” approach is in LogRobust from Zhang

et al., where researchers combine the skills of a neural network to apply an entire log to a vector in a high

dimensional graph. This application sufficiently sidesteps the issue of static parsing, sufficiently handling

unstable data. The shortcomings of this is the complicated training process that is beholden to data

sanitizing and normalization dependencies discussed earlier [32]. Fanaee-T and Gama, consider data as a

tensor object containing many intersecting vectors (e.g., time, frequency, message). Through this

reorienting, a more suitable anomaly detection solution might come [8]. While their solution would force

changing the standard log handling process, it might tailor the data better for a vector-based encoding —

thus making the data more readable to the LLM.

For background on zero-shot anomaly detection, Rivera et al. provide a statistical reasoning for success

of the technique. Their research shows that with proper setup, the algorithm can support an undetermined

number of fields and decipher outliers with no defined classifications [24].

Zero-shot anomaly detection benefits can be realized in a variety of applications. Esmaeilpour et al.

explores it as a solution to the issue with training datasets. Their process relies on identifying traits that

have been misapplied to classifiers — their goal is to constrain the data classifiers to the most reliable. By

asking a pre-trained model to identify outliers they achieve above 90% averages on zero-shot anomaly

detection [7].

2.4 LLM Internals

Hsieh et al. study the affects of context length on LLM performance. Their effort focuses on a

universal approach (RULER) to measure performance relating to context length, as well as explore the

limitations of contexts in current (2024) LLMs [15]. Their benchmark uses needle-in-a-haystack, an

approach taken during the evaluations later in this research. The research shows that degradation from

context growth causes increasing failures in testing — across a variety of evaluations.

Fu et al. focused on the advantages of extending context capabilities of LLMs. The researchers discuss

the need for long contexts when performing needle-in-the-haystack searches for data. As LLMs consist of
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indexed data part of their identity is this retrieval process. They find with some modifications a Llama-2, 7B

model can achieve worthwhile needle in haystack performance [9]. Liu et al. reviewed LLM performance

specifically on data location within a context length. By varying their needle in the haystack they measured

a variance in LLM success depending on the location of the data of interest based on its location [19].

In scenarios where data is consistent, embeddings and fine tuning will often improve LLM responses.

Designed by Su et al., INSTRUCTOR, a model to perform domain-aware embedding tasks. Users of a

pre-trained LLM can apply embeddings without having to re-train the model, in this sense they act as a

layer on top of the LLM [23, 26].

2.5 Extending LLM

PLLM-CS is a specifically trained LLM for detecting DoS attacks and other network-specific attacks

from an IoT network of satellites orbiting Earth. On this niche approach Hassanin et al. achieved 100%

accuracy, out-performing deep learning models and other transformer networks or language models. The

researchers attribute this performance improvement over traditional statistical and neural network

approaches to the ability of the LLM to handle novel data. Their shortcomings focus on the narrowness of

the network — making deviance fairly obvious [13]. This study indicates a data complexity threshold may

exist. An LLM can handle simple and reliable small dimensional data, but a neural network performs more

consistently over data growing in complexity, eventually outperforming an LLM.

Similar to the PLLM-CS, Bakumenko et al. employed an LLM specifically trained with financial data

for successful anomaly detection. This is an important step in research to broaden semantic expectations

for embedding capabilities of LLMs. By filtering their LLM response results (using custom-builtin

embeddings), the researchers were successful in detecting anomalies in numerical data [2].

Hadadi et al., focused on data to great success in evaluating LLM usage in anomaly detection. Similar

to the topic at hand in this research, this effort focuses on overcoming unstable logs. The method employed

uses fine-tuning a GPT-3 model based on properly parsed logs. They then supply queries with malformed

logs and anomalies. This method results in 98%, a small improvement to deep learning-based approaches

[11].
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There are a few direct applications of LLM into log analysis — a brief exploration from Egersdoerfer

et al. is of note. Their process is a precursor to this research, and importantly, their initial results show

potential for certain kinds of queries resulting in success [6]. The problems these researchers

acknowledged motivate this research and focus on the accessibility of log analysis output; specifically on

the technical explanation for the issue, as a way to reduce expert time commitments.

Additional efforts of note in the similar vein of applied LLM applications for anomaly-related

interaction:

• Ali and Kostakos integrate with a variety of existing technologies to provide a human-in-the-loop

system with more information provided by the LLM when threat hunting via system logs [1].

• Wang et al. offers LogExpert, an assistive application that integrates ChatGPT into the anomaly

resolution workflow [29].

• Shan et al. devise an application for searching log contents containing configuration errors. This

should serve as a preventative security technique with the advantage of limiting the human-required

knowledge for detecting such anomalies [25].

• Liu et al. uses LLM prompting for finding anomalies in time-based data (e.g., numbers) in large

sequences. This is a working implementation of a query-based LLM flow [19].

• Li et al. focuses on a set of tabular data. Similar to Bakumenko et al., their efforts married the

semantic pattern matching skills of LLMs with anomaly detection in numerical-based data. This

research is zero-shot and does not perform any pre-training or embeddings to enhance the model.

Their discussion informs evaluations in this research — finding that the a simple system of

serialization, query, and response would allow for successful anomaly detection [18].
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CHAPTER 3. Methods

3.1 Prompts

3.1.1 System Prompt

The system prompt is provided when customizing the provided Llama 3.1 model. This customization

allows for quickly referencing the model as a “copy” of the original that identifies, in this case, as a helpful

anomaly detector. The basic approach is to provide a definition for the point of interest (anomalies) and

then a ranking to allow for analysis. Local models with custom parameters (like the custom system prompt)

are a feature offered in the Ollama runtime (see Section 3.2). This system prompt (see, System Prompt)

was designed through trial and error and examples provided in [11, 18].

Constructing a model with a dedicated system prompt offers two benefits:

1. It narrows the scope of a response from the LLM.

2. It can enable data analytics by instructing the model to perform an assessment within constraints —

and then accessing the results of that assessment in the feedback.

System Prompt

Anomalies are found in data sets. An anomaly is an item contained in a set that is an outlier. It can

be an outlier either by the value or the context of the value. This context will indicate an error or

problem. You find anomalies on data sets. You will look at a whole data set and rank the likelihood

that each item is an anomaly on a scale of 1-10. You will also answer questions regarding cybersecurity

concerns, anomalies, and anything to do with logging in general. You will provide examples of each of

these when asked as well.
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The final two sentences will allow the prompt to escape normal content restrictions around supplying

information about cybersecurity threats. An example of this question answer in a typical chat channel is

provided in Appendix A.2.

3.1.2 Request Prompt

To focus the output, the LLM is provided with concise instructions on how to format the results

through a request prompt. This provides enough information to surmise the correct answer from the

response — accounting for potential partial hallucination or imprecision, something discussed by Hadadi

et al., Jiang et al. in developing their LLM informed solution. The reliable method developed here was

informed by the examples from the previous researchers as well.

Request Prompt

Read all of the data, identify the purpose of each item, and compare them to decipher any anomalous

data. Some data that appears normal might only be considered anomalous when combined with other

data.

Respond only with JSON containing the following keys and values:

- "rank": <the rank you assigned to the anomaly>,

- "line": <the line number of the data>/<the total number of lines in the file>,

- "data": <the relevant data>,

- "explanation: <the explanation for your choice>

Respond in JSON only.

3.2 Tools

This research relies on a model that can run with “accessible” hardware and without incurring

significant charges for the research [11]. Instead access to a high performance compute service (see Table
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Figure 3.1: The general application used to perform the evaluations for this research. In this case, the yellow shapes and arrows
are suggested input layers for more developed solutions than this project demanded.

GPU
2x NVIDIA A30
48GB RAM (combined)

CPU
2x AMD EPYC 9354
64 cores (combined)

RAM 512 GB

Table 3.1: HPC node details

Model
Meta Llama 3.1, 70 billion
parameters
[10]3

Runtime Ollama with Docker

Framework
Custom Python4

using LangChain5

Table 3.2: Application details

3.1) to run an open source mode (see Table 3.2) was relied upon. There are tools that would improve the

output more, depending on the implementation framework utilized. For my light research, I did not build

out any of these workflows. lamaIndex1 and LangChain2 both provide versions of structured output that

will handle rigid output requirements within the query/answer workflow. The interaction of these layers is

seen in Figure 3.1.
1https://docs.llamaindex.ai/en/stable/module_guides/querying/structured_outputs/
2https://python.langchain.com/docs/how_to/structured_output/
3https://www.llama.com/
4Code available at https://github.com/iamwpj/bigstick
5https://www.langchain.com/

https://docs.llamaindex.ai/en/stable/module_guides/querying/structured_outputs/
https://python.langchain.com/docs/how_to/structured_output/
https://www.llama.com/
https://github.com/iamwpj/bigstick
https://www.langchain.com/
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3.3 Methodology

Each research question is addressed with a series of evaluations (at least one). These are designed

datasets that are provided using the prompting in 3.1. The request is repeated to the LLM a number of

times per evaluation (often, 100-1,000).

1. Evaluations for RQ 1 are itemized in Table 3.3.

2. Evaluations for RQ 2 are itemized in Table 3.4.

Discussion for the data contained in each test follows in Section 3.4.

Evaluation Description Line of Interest

sm-dim An array with organized as key: value, de-

fined as A:0-Z:0. A short example is shown in

Listing 3.1

F:1

sm-dim-varlen A small dimensional array, with variable length

lines. Data is selected to look like URI endpoints.

Source data is parsed from an online Apache web

server access log sample file. See footnote 6.

/../../..

/etc/shadow

lg-ran Selected lines from an Apache web server access

log sample file. See footnote 6.

See Listing 3.3

Table 3.3: RQ 1: List of evaluations runs
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Evaluation Description Line of Interest

sliding-ctx Test the effect of non-increasing data and increasing

context window on query time and correctness. The

data set is built as a list of lines, each containing

ffffffffffffffff, with a random line adjusted.

2DEM6O2B9AZO9O1X. The

dataset is configured at a standard

size, but the context length avail-

able to the LLM is increased with

each trial.

multi-src Two log sources have been concatenated and anomalous

data added. The original Apache log is used (see footnote

6), and an additional complication of matching Linux ipt-

ables logs have been added. See discussion in Section 3.3,

for how this set was built.

Apache log example shown

in Listing 3.3 and iptables

REJECT logs matching this

pattern: [IPTABLES INPUT]

REJECT .* 93.164.60.142

query-

growth

Adding to the query size to test response time. This dataset

uses a word list explained in Section 3.4.6. In other tests,

random characters are used to challenge the tokens (similar

to how a log file might do), but for this test the model itself

was being evaluated. Words are chosen at random from the

list to create a unique request each trial. The line of interest

is anomalous since it is a symbol, not a word (or even a

character for that matter).

The dollar sign is inserted in place

of a word at a random line — $

Table 3.4: RQ 2: List of evaluations runs

3.4 Data

For evaluations that rely on a generated “real-world” log set, a public reference log was used. The log

is an Apache Common Log Format example, provided to test the parsing capabilities of a log system.6

6Apache Common Log Format, web access log. Collected from Elasticsearch GitHub repository, https://github.com/
elastic/examples/blob/master/Common%20Data%20Formats/apache_logs/apache_logs

https://github.com/elastic/examples/blob/master/Common%20Data%20Formats/apache_logs/apache_logs
https://github.com/elastic/examples/blob/master/Common%20Data%20Formats/apache_logs/apache_logs
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3.4.1 Small Dimensional Array

Listing 3.1: A small array, with an index and nearly hetergenous data. In this case F is set to 1 — creating an anomaly.

1 {

2 "A": 0,

3 "B": 0,

4 "C": 0,

5 "D": 0,

6 "E": 0,

7 "F": 1,

8 "G": 0,

9 . . .

10 }

This is the simplest data provided for the LLM query. It consists of a key-value pair with a single

outlier, always at F. This, combined with the request prompt (Request Prompt) results in size of 852 bytes,

an abridged sample is shown in Listing 3.1.

3.4.2 Small Dimensional Array, Variable Length

Listing 3.2: A small dataset with generated URI directory components.

1 index,entry

2 0,/users/cross-platform/impactful/best-of-breed

3 1,/implement/recontextualize

4 2,/b2b/redefine

5 3,/../../../etc/shadow

6 4,/innovate/scale

To show contextual understand a dataset is needed. This small dimensional array has a varying length

value field (called, entry) that ideally the LLM will recognize as URI components. This recognition is

not required. As noted in Table 3.3, the line of interest is inserted randomly through the dataset for each

request. The line of interest will be /../../../etc/shadow, is an example of a request attempting to

find passwords via a directory traversal attack on a web server. This results in an average request size of

3400 bytes (depending on the line that is swapped for the line of interest). See an example of this data in

Listing 3.2.

3.4.3 Large Random
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Listing 3.3: A sample log, sourced from an Apache web server, reconstructed to include a malicious URI path. The UserAgent
portion has been trimmed since it is unnecessary for this example. A highlight has been added to show this modification.

1 93.164.60.142 - - [17/May/2015:12:05:31 +0000] "GET /../../../etc/shadow HTTP/1.1"

200 32 "-" "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36"

This is a fully functional Apache web server log in Common Log format, see footnote 6 for these

details. Similar to the above dataset, a path traversal request is added to this log output. This contains two

suspicious components:

• The suspicious URI element, /../../../etc/shadow

• A successful request status, noted as 200 for the Apache logs

The elements of interest are highlighted in the sample log, Listing 3.3. Similar to the previous method

of evaluation, this data was presented to the LLM with the line of interest randomly placed in the code (this

is why the timestamp is also trimmed from the log). This request resulted in an average size of 2340 bytes,

depending on which line was substituted for the line of interest.

3.4.4 Sliding Context

This data set is fully generated at request time by the code that issues the requests to the LLM. The

characters are randomized for the line of interest, with the rest being a series of fs. There is only one goal

in this evaluation dataset is to test the performance of the LLM. Since the data size never increases, the data

remains exactly 24546 bytes for each request.

3.4.5 Multi-source

Listing 3.4: A sample Linux iptables log, rejecting traffic from 93.164.60.142 to port 8080.

1 2015-05-17 11:01:44 [IPTABLES INPUT] REJECT IN=eth0 OUT= MAC=00:15:5d:9c:32:a4

:00:00:06:F6:70:41 SRC=93.164.60.142 DST=172.26.15.252 LEN=60 TOS=0x00 PREC=0x00

TTL=64 ID=15619 DF PROTO=TCP SPT=64398 DPT=8080 WINDOW=32120 RES=0x00 SYN URGP=0

During the multi-source testing, Linux iptables (a native host-based firewall solution on Linux)

ACCEPT and REJECT logs were added, see Listing 3.4. These logs match the Apache requests — the
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design of the dataset is intended to be challenging. For each successful Apache request there is an ACCEPT

firewall log. Additionally lines of interest have been added to show an IP address scanning for open ports,

generating REJECT requests. Eventually this IP address finds a web port open and successfully makes a

malicious request seen in Listing 3.3. The information for the iptables log is all contrived — generated

using false values except where the IP, MAC address, and ports were needed to match for validity. A series

of iptables logs like this indicates a device is scanning for any exposed ports.

This data remained static per request, resulting in a fixed size of 31,123 bytes, 128 log entries.

3.4.6 Query Growth

Finally, in the query-growth evaluation (see Table 3.4), a list of random words was required. A suitable

sample is hosted by FreeBSD (for use in their operating system word dictionary)7. This results in a request

size starting at an average of 761 bytes, with 10 words, up to 10,000 words for an average request size of

112,971 bytes.

3.5 Return Elements

As is referenced in the Request Prompt, the LLM is asked to return a JSON formatted array containing

the following elements:

• rank: The LLM is asked to score the anomalies in System Prompt, this score is returned in this field.

During this research this score is not utilized, except in testing.

• line: Each dataset provided to the LLM is multi-line, and often will contain an index as well as exist

in a spatial location within the provided data. For example see the dataset in Listing 3.1. F is at line

7, but the LLM could be correct to call it’s location F as well. Similar to the rank return, this element

is of limited use, but vital to show limitations of the LLM and as a improvement to the overall

confidence in the results.
7https://svnweb.freebsd.org/csrg/share/dict/words?view=co&content-type=text/plain

https://svnweb.freebsd.org/csrg/share/dict/words?view=co&content-type=text/plain
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• data: This is provided as a vague element to the LLM. In an ideal system this response would be

correct 100% of the time and contain exactly the line of interest contents. Typically on simpler

requests this response element is exactly the anomalous data. On longer queries the LLM will

provide odd nesting or a large array of data including the anomalous data.

• explanation: For performance checking the application this field offers helpful framing from the

LLM for why the rank and data was selected. In a fully functional system this would combine with

data to improve confidence in the result and serve as the justification for the anomaly itself. Often in

testing the LLM performs this element well and the field is relied upon to presume correctness in the

results similar to the data element.



24

CHAPTER 4. Results

4.1 Research Question 1

RQ 1 Takeaways

• The majority of successful returns fell in the data and explanation fields for each trial return. This

indicates a good understanding of the data by the LLM — even across diverse types of data.

• The LLM struggles with spatial analysis — e.g., providing a correct line number. It also shows

signs of struggling as data complexity and length increases.

The LLM is instructed to provide multiple return elements — for this baseline a single correct element

will inform the success.

S =
∑

[R1 > 0], [R2 > 0], ...[Rx > 0] (4.1)

For Equation 4.1, return elements (Rx) are given a 1 if correct and 0 if not. The number of Rx is equal

to the number of trials per evaluation. The success (S) of the trial evaluation is 1 for each result where any

one of these elements returns successful, or > 0. This matching style is referred to as a minimum match. It

is intentionally lacking rigor during this RQ exploration.

The results for minimum matches during three evaluation trial sets for RQ 1 were positive, as seen in

Figure 4.1 and by the specific performance metrics in Table 4.1. The majority of successful returns fell in

the data and explanation fields for each trial return. This indicates a good understanding of the data by the

LLM — even across diverse types of data.

Early indicators are raised in these returns. The first is the lack of a successful line indicator. This is a

persistent problem with the LLM from proof of concept testing where the lack of “spatial” awareness for

elements in a provided dataset is obvious. This inability will have no affect on a zero-shot detection system
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— so long as the LLM can provide a proper index or other identifiable component to indicate the location

of the anomalous data with in a provided data set.

The second indicator is from the results of the lg-ran where the more “challenging” real-world data

was provided to the request query. The LLM only completed 306 of 1000 requests before suffering from

significant performance degradation. More discussion will occur in RQ 2 regarding application

performance and the affects on anomaly detection results.

sm-dim sm-dim-varlen lg-ran

Data 965 787 211

Line 23 0 0

Explanation 934 826 263

Minimum Match 998 917 280

Trials 1000 1000 306

Table 4.1: Performance results for each evaluation with their minimum match to indicate a single source success on query return.

0 20 40 60 80 100

sm-dim
1000 total queries

sm-dim-varlen
1000 total queries

lg-ran
306 total queries

99.8%

91.7%

91.5%

Figure 4.1: RQ 1, Minimum match percentage per evaluation
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Listing 4.1: An exact match from the LLM when querying for anomalies on the 3.1 small dimension array.

1 "0": {

2 "rank": 8,"line": 6,"data": {"F":1},

3 "explanation": "The value ’1’ at key ’F’ stands out as an anomaly in this

dataset because all other values are ’0’. This suggests that the data

point for ’F’ may be incorrect or unusual compared to the rest of the

data."

4 },

Listing 4.2: A successful response for lg-ran evaluation. Note the bogus "line": "1/93" entry, but correct callout to the
data itself in both data and explanation response fields.

1 {

2 "rank": 10,

3 "line": "1/93",

4 "data": "93.164.60.142 - - [17/May/2015:12:05:31 +0000] "GET /../../../etc/shadow

HTTP/1.1" 200 32 "-" "Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (

KHTML, like Gecko) Chrome/32.0.1700.107 Safari/537.36"",

5 "explanation": "This line is highly anomalous because it is attempting to access a

sensitive system file (/etc/shadow) which contains hashed passwords. This

could be a sign of an attacker trying to gain unauthorized access to the system

."

6 }

4.1.1 Examples of Returned Results

4.2 Research Question 2

Listing 4.3: A failed response for lg-ran evaluation. This would have likely been a correct response, but for some unknown the
reason the LLM lost it’s way in the response composistion.

1 {"rank": 10, "line": "1/70", "data": "93.164.60.142 - - [17/May/2015:12:05:31 +0000]

\\"
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RQ 2 Takeaways

• Correctness of single source queries show promise. This success is not achieved in multi-source

testing. The performance of the LLM is not cumulative, once challenged it will under-perform

previous results.

• Query size (measured in context length) does not significantly affect the query duration. There

remains an unaddressed duration outlier issue arising in RQ 2 evaluations.

RQ 2 focuses on correctness in the response elements provided from the LLM. These are explained in

detail in Section 3.5. Each element scores 1 for correct and 0 for incorrect. The final success of a trial is

thus determined should the result surpass a defined threshold.

4.2.1 RQ 2.1

C = E + L+D(i) (4.2)

This question is answered with sliding-ctx evaluation, Table 3.4. Equation 4.2 provides a simple

relationship between the return elements in Section 3.5 and correctness. Where correctness (C) is a value

determined by the boolean entry for any of the following being true, explanation (E), line (L) — the

correct identification of the object of interest via an index, or data (D) point of interest (i) identified. Of

these measures two are exact (L, D(i)) and while the explanation relies on some subjectivity, the common

measure is to search for “key terms” — identified per evaluation.

Determining reliability in anomaly detection for this test relies on a correct needle-in-a-haystack

performance, as shown in RULER tests by Hsieh et al., [15]. These researchers focused on context length

challenges and specifically the effect of scaling. To create an idea of a baseline with the model used here,

Llama 3.1, a similar English word based challenge was supplied, albeit easier than those imposed by Hsieh

et al. The evaluation for sliding-ctx shows a worst-performing correctness of explanation, with 77.2%, see

full results at Table 4.2 and Figure 4.2.
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Figure 4.2: RQ 2, Correctness for sliding-ctx evaluation. Green indicates a correct element and red indicates an incorrect
element. There were 127 total queries (top x-axis), increasing the context window size (bottom x-axis) by 1,000 tokens each trial.
The block of red from 0-6,000 indicates part of the period where the context length provided to the LLM is smaller than the size of
the request (3,000). See Table 4.2.

In RQ 1, the same test was being performed, but without a focus on correctness of the response, instead

the results were accepted as a “pass” or “fail” technique. For the application component, it is important that

the relationship between context window length and response correctness not exist as a negative

correlation. Overall the first six requests failed significantly. The block of red from 0-6,000 indicates the

period where the context length available to the model is smaller than the actual request made to the LLM –

in this sense, it cannot see all of the data provided. This should have been surpassed after a few requests, it

is an open question as to why the data and line elements did not begin to succeed as soon as the token size

of the input data threshold of 3,000 was cleared. This evaluation also shows a real struggle with the

explanation that had not be exhibited in RQ 1 testing, see Table 4.1.

The data element success is a highlight for this evaluation. The LLM has a clear grasp of the outlier in

the dataset — even if it struggles to place it spatially (line) and explain the rationale.1

1These results might cause the reader to assume there is a global cache or local cache for the LLM that would cause the AI
to gradually discover and correctly “grasp” the anomalies in the dataset. The cache has been disabled in the evaluations and,
furthermore, a functional cache would have to exist for the non-specified cache=True default setting to take effect (a cache was
never built during researching). In additional testing, there are still “patches” of inconsistencies. The results appear characteristic
of this evaluation.
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Average request response time 372.2
Total requests 127

Request byte size 24,546
Request character count 19,890

Request token size 3,000
Correct line 79.5%

Correct data 96.1%
Correct explanation 77.2%

Table 4.2: RQ 2.1, sliding-ctx results statistics.

To continue exploring application performance, a “real-world” evaluation was performed. This is the

multi-src evaluation from Table 3.4. This evaluation concatenates an Apache web access log and

correlating log events from Linux iptables into a single file and passes that as input data with the request

prompt.

The significant performance degradation of correctness performance between the single-source (sliding

context) and multi-source structure of the data put to the LLM is alarming, see Figure 4.3, and Table 4.3.

This indicates real application limitations. Anomaly detection capabilities are clear in previous testing, but

with a complicated data set the performance becomes erratic. The immediate problem is with the 0%

success rate on the data line alone. The issue comes with requiring two or more successful data point

identifications. The explanations were hand-checked allowing for a close examination of the results.

The successes for explanation require two components in the explanation and data:

• A recognition of an IP address scanning for open ports.

• Addressing malicious the directory traversal request.
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Figure 4.3: RQ 2, Correctness for multi-src evaluation. Green indicates a correct element and red indicates an incorrect element.
There were 101 total queries, unchanged for each trial of the evaluation.

Total requests 101

Avg. req. resp. time 1291.2 seconds

Request byte size 31,123

Request character count 29,827

Request token size 15,153

Correct line 25.7%

Correct data 0.0%

Correct explanation 13.9%

Table 4.3: RQ 2.1, multi-src results statistics.

This was achieved in the explanation 13.9% of the time, but the LLM rarely was willing to identify

multiple data points — even in cases where the explanation succeeded. Softening the requirements to only

need one data point resulted in a jump in the correctness: the data element achieved 39.6% correctness, but

this fails to meet application requirements. An important takeaway from the softening, however is the
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Total requests 155
Outliers 21

Avg. req. resp. time
with outliers 2543.7 seconds, 42 minutes

Avg. req. resp.time
without outliers 239.7, 4 minutes

Table 4.4: RQ 2.2, query-growth results statistics. Outliers are those who’s response time is longer than 10 minutes.

continued poor performance. Compare 39.6% to the results from RQ evaluation lg-ran, performing with a

minimum match success of 91.5%. This shows that even when the LLM is challenged it does not have

guaranteed performance, instead the skill effectively resets, thus calling this performance erratic.

4.2.2 RQ 2.2

To quantify the “fit” of this application in a log analysis ecosystem a time measurement is the initial

hurdle to be cleared. For Equation 4.3, with Evp as evaluation technique performance, ql as query length

(size), and dm as duration (in microseconds); this metric indicates the relationship between query length

and the duration. This metric measures the performance of the application during evaluation trials.

Evp =
ql
dµ

(4.3)

This evaluation is based on dictionary word counts. It starts 10 words, increasing words 10 for each

trial, starting at 10 and ending at 1560 words after 155 completed trials. Performance degradation as

queries grow is obvious. The correlation of query size in bytes to the duration of the LLM response is not

significant. The correlation hinted at in Figure 4.4 is clearly between the outlier time and query size. Once

these outliers are removed the trend line marked in blue indicates a stable performance rate of around 4

minutes per request, without any indication that the request size impacts this significantly. This significance

could be affected by the degree of the outliers’ deviation from 4 minutes, but as additional testing was

performed it did not become clear that any additional data analysis would provide insight into this concern.

See Chapter 5 for more analysis on the cause of this figure.
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Figure 4.4: RQ 2, Query size over duration. Size effects on query duration timing is significantly affected by outliers. The effected
trend is shown in orange, while the blue line shows outliers removed — in this case outliers took a duration of longer than 600
seconds (10 minute) to respond. See more statistics in Table 4.4.

4.3 Examples of Returned Results

Listing 4.4: Sliding context answers performed well for correctness after the initial errors shown in Figure 4.2

1 {

2 "rank": 10,

3 "line": "660/1000",

4 "data": "2DEM6O2B9AZO9O1X",

5 "explanation": "This line is an anomaly because it contains a string of characters

that is significantly different from the surrounding lines, which are all "

ffffffffffffffff". This suggests that line 660 contains actual data or a

message, rather than just filler characters."

6 }

Listing 4.5: Request response for query growth evaluation for RQ 2.2, with an incorrect response. This is the last successful
response from this evaluation. The expected response would have been, $ on line 662.

1 {

2 "rank": 5,

3 "line": "1/2146",

4 "data": "metaphor",

5 "explanation": "This item appears out of context compared to the other data points

which seem to be proper nouns or technical terms."

6 }
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CHAPTER 5. Discussion

5.1 Context

Through discussion in their RULER implementation, Hsieh et al. describes the process of reliable

needle-in-a-haystack searching. The researchers scaled up to a context length of 200k, but noted serious

performance degradation. This is evident too in proof of concept testing with Llama 3.1-70b’s 128k

limitation. Sizing the context length as close to input data requirements as possible will offer chained

performance improvement (in the case LLM queries occur within a long chain of queries — the time sink

for a response might become too long to be of use). As described by Fu et al., I can perform a

needle-in-a-haystack experiment and expect improvements similar to what they showed in OpenAI’s

GPT-4 model (Meta has since improved Llama to version 3 since Fu et al. was published earlier in 2024 – it

more closely matches the results these researchers found for the GPT-4 model). If I perform a series of

these experiments with a key set of data, I can predict the most flexible context length in conjunction with

query response time and accuracy.

Implementing with longer context windows versus retrieval augmented generation pipelines will

ensure the LLM has the ability to analyze entries in the data set within context. For intermixed log sources

this is especially important as one field of information can be irrelevant in the case of some log sources, but

when combined with additional sources this field will indicate an anomaly.

5.2 Confidence

Neural networks and machine learning models will provide statistical confidence levels, but even in

situations where an LLM is instructed to do so, these are often contrived. Esmaeilpour et al. discusses

confidence scoring. Their focus is on image analysis and to validate results provided by OpenAI models,

focusing on image labeling [7]. Their confidence derives from having multiple mediums to analyze — text

and images. This will be an important step as more reliable results are produced.
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5.3 Detecting Anomalies

Zero-shot anomaly detection is a feasible capability of LLMs. There is plenty of successful evidence in

RQ 1 to back up this suggestion — from contrived data to single-source “real world” anomalies.

Challenging the capabilities by adding additional sources appears to be the biggest skill drawback at the

moment. This LLM skill would likely be positively affected by chain-of-thought efforts, as described by

[19]. Their research focused on a much narrower set of data (time-series), but through more itemized

anomaly types and implementing chain-of-thought their LLM was able to perform favorably to popular

methods. There are some reasoning challenges to LLM [22], specifically the LLM reliance on

pattern-matching in place of cognition. While this might disrupt some processes, it would play a strength in

zero-shot anomaly detection applications, where data is, in essence, abstract.

As alluded to in Section 2.5, by Hassanin et al., a concern going into this research was where the

intersection of performance to complexity lies. There is a clear indication in the results provided by 4.2.1

for multi-src, that efficacy of the LLM does not just drop respective to the increased demands by the

evaluation, but falls away — in totality. The LLM does not continue to perform at the level it was in

previous evaluations, instead it simply fails. If this challenge is cleared, a measure of complexity in query

could be studied in regards to other LLM performance quotients.

5.4 Performance of Queries and Hardware

In RQ2 evaluations, nearly every application performance metric is too poor for in flight applications.

The context length is far too limiting. Log chunks of around 100 lines of Linux logs is too restrictive — in

Windows events this becomes even more constricted since these logs are around 500 bytes1. Without the

ability aggregate enough logs, even single source analysis will not work effectively by the LLM. Assuming

the aforementioned capabilities are resolved, then an important future area of research will need to focus on

deep context options.
1Microsoft offers this estimate in their documentation for Server 2008. Windows services typically log to the

Windows Event services, in a statically defined XML template — all to say, this number is likely still accu-
rate today. See more at, https://learn.microsoft.com/it-it/previous-versions/windows/it-pro/
windows-server-2008-R2-and-2008/dd349798(v=ws.10)#maximum-log-size-kb

https://learn.microsoft.com/it-it/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/dd349798(v=ws.10)#maximum-log-size-kb
https://learn.microsoft.com/it-it/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/dd349798(v=ws.10)#maximum-log-size-kb
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Hardware was a limitation in this study. The parameter advantage between Llama 3.1 8-billion and

Llama 3.1 70-billion was worthwhile in the original proof of concepts during evaluation design. On a more

powerful GPU, the selected model would perform to it’s fullest potential [10]. More efficient models have

arrived [5], as well as better understandings of the advantages of fine-tuning and embedding opportunities

[26].

5.5 Research Question 3

RQ 3 Takeaways

• The first step for systems is to create an LLM integration. This is seen in current research and

is worth continuing to develop — providing it is done on pace with performance and reliability

improvements in LLMs.

• Human-in-the-loop is a key component for the foreseeable future of anomaly detection.

• A proposal for atomic analysis is presented based on a simplified walk through of log sequence

processing. This approach needs to be formalized and optimized to allow for high throughput

online systems.

5.5.1 System Design

For RQ 3, an informed design is needed. After reviewing evaluations and related works in the field of

log analysis a path for LLM integration into log analysis has become clear. System design will not be able

to avoid human-in-the-loop process for the foreseeable future. The challenges of LLMs show in the

previous chapter can be alleviated through AI infrastructure changes and processes such as fine-tuning or

embedding, but throughout the application design there was little evidence that an LLM can scale the

hurdle of context awareness or judgment calls with its current parameters.

With this in mind, a proposed process based on the efforts in this research is shown in Figure 5.1. This

should function as a first step — the least intrusive and most performant way to improve log analysis and
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Figure 5.1: System Design, first step. A diagram that shows the traditional, see Figure 1.1 for the more traditional approach. The
steps in red offer an initial approach that works to minimize the reliance on engineer time in filtering anomalies.

reduce reliance on engineer time for handling anomaly detection. This type of system is utilized in several

evaluations to be a sufficient way to utilize LLMs in log analysis today [1, 18, 29].

This process formalizes some of the initial research that shows success in relying on LLMs for context

and interpretation. The LLM verification step can be easily enhanced with domain-specific knowledge.

Adding domain-specific knowledge through embedding is seen in several successful explorations already,

and would be a key next step for the field as a whole [2, 13, 25].

As reliable patterns are found the LLM can be entrusted to take a more aggressive role in anomaly

detection. This is the role expected by the LLM during the research here. Reducing computational stress

and engineer time in log pipeline maintenance would be the greatest outcome through expanding the role

of LLM in the processing pipeline.

Additionally, as discussed by Lupton et al., one of the biggest concerns in the diverse centralized

logging platforms is missing anomalies. Without any way for a person to properly handle the amount of

diverse log types and sources arrive in the centralized systems, an organization is at risk for missing

anomalies. Proactive measures to reduce unexpected maintenance needs or system interruptions rely on

each event being catalog and audited for risk.
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Figure 5.2: System Design, second step. As the log processing analysis becomes more dependent on LLMs there might not be a
requirement for the full log processing workflow.
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5.5.2 Analysis Design

From a practical experience perspective, many nearest neighbor or statistical neural networks that rely

on semantic deviations from a baseline fail (see examples from [3, 28]) to account of the astounding rarity

of a security vulnerability in context with all logging. Until systems exist that properly audit each log on a

consistent logic workflow, reliable LLM performance will be hard to measure. While this process sounds

extensive, it can exist as an atomic operation performed on a sequence of logs as follows in the

hypothetical — see Example Atomic analysis process.
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Atomic analysis process

1. Identify a sequence of logs for a time frame, this is sequence (A).

2. Find common log types in sequence (A). Catalog and count these as ((A1), (A2), ...)

(a) Identify a second sequence of logs for a time frame, this is sequence (B)

(b) Find a common log type in sequence (B) that matches ((A1)).

(c) Use this match to determine if a occurrence threshold should be breached.

(d) Repeat for all sequences in (A) to determine if any abnormalities exist in both (A) and (B)

simultaneously.

3. Review least common log type, ((An−1)), and identify it’s purpose and fields.

4. Compare the number of occurrences and the context of these occurrences to determine if there is

abnormality.

5. Account of field data in ((AFD
n−1)). Perform a comparison of this field data to ((BFD

n−1)) to detect

anomalies in both logs simultaneously.

6. Repeat this process for each unique subset of (A).

7. Finally begin a process to compare field data across unrelated log sequences. This is comparing

((AFD
1 )) to ((AFD

2 ))

(a) For cases where similarities or differences are of note, a comparison of the (A) sub-sequence

to an unrelated (B) sub-sequence might help to show cases where a repeated field value is

of note.

This series of steps can help to whittle the total sequences to analyze down. Depending on application

design and caching capabilities initial decisions on the ((B)) sequence set can be referred to to enhance

processing for future decisions. Without a consistent process during the analysis no future progress on

verifying LLM performance will be reliable.
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Figure 5.3: Atomic analysis processing. This shows the iterative process of reducing the messages for alerting. On higher
throughput systems the number of atomic analysis sequences will scale both vertically and horizontally.

Using new technology provided by LLM infrastructure such as agents2, model context protocol3, and

the thinking skills found in models like DeepSeek [5], an atomic analysis process can be built out. This

process will share the same reference data and subdivide the log sequences to single units, finally

combining results to a new single resource — as the throughput of incoming messages is added more and

more atomic processors can be layered in. An example of this flow is shown in Figure 5.3.

Systems like this are emulated during neural network construction [28], and shown in process for

LLM-assisted efforts today [1, 29, 30]. This atomic process can be developed alongside the more robust

LLM informed anomaly detection systems shown in Section 5.5.1.

2https://blog.langchain.dev/what-is-an-agent/
3https://modelcontextprotocol.io/introduction

https://blog.langchain.dev/what-is-an-agent/
https://modelcontextprotocol.io/introduction
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CHAPTER 6. Conclusion

There is a temptation to classify this research utilizing LLMs and AI into a category of “a solution

seeking a problem”. This betrays the reality faced by cybersecurity professionals today. As noted in the

research, a significant motivator in this project is to create a more robust log analysis system to overcome

shortcomings for large scale data processing. These shortcomings are broader than a single machine

learning technique or the amount of consumed wattage for training a neural network versus utilizing a

localized domain specific model. Instead, the shortcomings are an inherent side effect to the ecosystem.

This research does not seek to redesign that, but an incremental improvement in the near future might be

found by utilizing an LLM.

6.1 Summary and Future Directions

Key takeaways should focus on baseline capabilities shown in the research. The mere existence of

zero-shot anomaly detection capabilities in “off-the-shelf” models warrants additional research. The

shortcomings of current log analytics efforts have not been properly addressed with the capabilities of

machine learning and neural networks. Some of those shortcomings may never be addressed.

Human-in-the-loop anomaly detection will not be affected by LLM capabilities any time soon. By

diversifying the log analytics tool chest with LLM interactions large logging platforms can lower the

barrier of entry in both engineer time and domain knowledge. A system where all logs are assessed could

become the reality. Additional efforts put into the system and analysis design shown in RQ 3 will lead to a

more effective wholistic process that can ensure this goal.

I found that there is a place for LLM in anomaly detection, including zero-shot variety. Despite cases

of poor results, the future of this research is likely to provide successful returns, based on baseline research

defined here. The future of log analysis and anomaly detection will continue to intersect with AI research

to overcome complex issues when it comes to handling large dynamic data at scale.
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6.1.1 Key Findings

• The LLM can provide anomaly detection for simple, diverse data inputs.

• The LLM struggles with spatial analysis — e.g., providing a correct line number. It also shows signs

of struggling as data complexity and length increases.

• Multi-source testing shows poor performance. The performance of the LLM is not cumulative, once

challenged it will under-perform in areas where it would have excelled.

• Query size (measured in context length) does not significantly affect the query duration. As

previously discussed issues are resolved, the query duration should remain consistent or improve.

• For both system and analysis design there are good options available. A proposed analysis model

should be evaluated and formalized so these designs can be utilized and improved upon effectively.

6.1.2 Future Directions

• Fine-tuning and longer context models. The issues of confusion found in RQ2 when presented

with a multi-source log to analyze will be addressed by better performing models. If the model has a

better understanding of the data and a more reliable tolerance for long context data, there should be

less confused results.

• Preparing data. A key effort in this research focuses on zero-shot analysis. There are existing

machine learning patterns that would align with this effort, [7, 17, 28]. Log analysis that requires

human-in-the-loop steps could swap out one of those steps, reviewing machine learning results, with

an LLM-in-the-loop step.

• Digital forensics performance. To assess the performance of an LLM it will be important to have a

human-based benchmark. An investigation led by human researchers compared to LLM efforts

would provide guidance on ways in which the LLM skills might not be able to fulfill digital forensic

needs.
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• Standardize an analysis process. A process of iteratively analyzing sequences of logs and reducing

logs of interest will create an achievable target for auditing ever log and ease the process of

designing systems to handle this goal.

• Integrating LLM infrastructure. Develop components that integrate LLM technologies into key

components of the log processing pipeline.
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APPENDIX A. CODE EXAMPLES

A.1 Log parsing results

A.2 Conversation regarding cybersecurity

A.3 Small dimensional array nonmatches

A.4 Large data length array nonmatches
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Listing A.1: An example of the parsing result for a simple Apache HTTPD server log.

1 # Raw Log:

2 127.0.0.1 - - [28/Jul/2006:10:22:04 -0300] "GET / HTTP/1.0" 200 2216

3 # Parsed Result

4 {

5 "clientip": "127.0.0.1",

6 "ident": "-",

7 "auth": "-",

8 "timestamp": "28/Jul/2006:10:22:04 -0300",

9 "verb": "GET",

10 "request": "/",

11 "httpversion": 1,

12 "response": 200,

13 "bytes": 2216

14 }

Listing A.2: This is a conversation attempting to request information about directory traversal attempts in Apache HTTPD logs.

1 User Please describe a directory traversal attack.

2

3 llama3.1:8b: I can’t provide information on how to perform a directory traversal

attack. Is there something else I can help you with?

4

5 bigstick:simple: Here is an example of a potential directory traversal attack attempt

in Apache HTTPD logs:

6

7 192.168.1.100 - - [14/Jan/2022:10:45:23 +0000] "GET /../../../../etc/passwd HTTP/1.1"

404 204

8

9 In this example, the attacker is attempting to access the /etc/passwd file, which

contains sensitive information about system users and passwords. The ../../../../

sequence is an attempt to traverse up the directory tree and escape the web root

directory.

10

11 The log entry indicates that the request was made from IP address 192.168.1.100, and

the user agent (not shown in this example) may provide additional information about

the attacker’s browser or tool.

12

13 The 404 status code indicates that the requested resource was not found, which may

indicate that the attack was unsuccessful. However, it is still important to

investigate such attempts to determine the intent of the attacker and take any

necessary measures to prevent future attacks.

14

15 This type of log entry would likely be ranked as a high likelihood anomaly (8-10 out

of 10) due to its suspicious nature and potential security implications.
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Listing A.3: Example results from testing a small dimensional array. Even in the cases where the LLM provided a response that
was incorrect, the anomaly is still decipherable. In various testing on this type of array, I have never had any hallucinations in the
explanation.

1 {

2 "6": {

3 "rank": 10,

4 "line": "F",

5 "data": "1",

6 "explanation": "The value ’1’ is an outlier compared to all other values in

the dataset which are ’0’. The context of this value suggests that it does

not fit with the pattern established by the rest of the data."

7 },

8 "17": {

9 "rank": 10,

10 "line": {

11 "F": 1

12 },

13 "data": 1,

14 "explanation": "This value stands out as the only non-zero value in the entire

dataset, making it a strong anomaly."

15 },

16 "18": {

17 "rank": 10,

18 "line": "F",

19 "data": 1,

20 "explanation": "The value ’1’ is an anomaly in this dataset because all other

values are ’0’. This stands out as a clear outlier."

21 },

22 "66": {

23 "rank": 10,

24 "line": "F",

25 "data": 1,

26 "explanation": "The value 1 is an outlier in this dataset as all other values

are 0. The context of the data suggests that a value of 1 is significantly

different from the rest and may indicate an error or problem."

27 },

28 "95": {

29 "rank": 10,

30 "line": "F",

31 "data": 1,

32 "explanation": "The value ’1’ is an outlier in a dataset where all other

values are ’0’, indicating a significant deviation from the norm."

33 }

34 }
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Listing A.4: The nonmatching results from testing a variable length data query. Even in the cases where the LLM provided a
response that was incorrect, the anomaly is still decipherable, excluding index 79. The common issue is missing the data field.
The explanations are reliable in this runtime, none surveyed contained hallucinations.

1 {

2 "18": {

3 "rank": 1,

4 "line": "93.164.60.142 - - [17/May/2015:12:05:31 +0000] \"GET /../../../etc/

shadow HTTP/1.1\" 200 32 \"-\" \"Mozilla/5.0 (Windows NT 6.2; WOW64)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.107 Safari/537.36

\"",

5 "explanation": "This entry stands out because it appears to be an attempt to

access the /etc/shadow file, which contains sensitive password information.

This is likely a malicious request and should be investigated further."

6 },

7 "25": {

8 "rank": 1,

9 "line": "93.164.60.142 - - [17/May/2015:12:05:31 +0000] \"GET /../../../etc/

shadow HTTP/1.1\" 200 32 \"-\" \"Mozilla/5.0 (Windows NT 6.2; WOW64)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.107 Safari/537.36

\"",

10 "explanation": "This line is an attempt to access a sensitive system file (/

etc/shadow), which contains hashed user passwords. The fact that the

request was successful (200 status code) and returned 32 bytes of data

suggests that the server may be vulnerable to a directory traversal attack

or has misconfigured permissions."

11 },

12 "40": {

13 "rank": 1,

14 "line": "93.164.60.142 - - [17/May/2015:12:05:31 +0000] \"GET /../../../etc/

shadow HTTP/1.1\" 200 32 \"-\" \"Mozilla/5.0 (Windows NT 6.2; WOW64)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/32.0.1700.107 Safari/537.36

\"",

15 "explanation": "This line stands out as an anomaly because it appears to be an

attempt to access a sensitive system file (/etc/shadow), which is unusual

and potentially malicious behavior for a web request."

16 },

17 "79": {

18 "rank": 1,

19 "line": "108.32.74.68 - - [17/May/2015:12:05:58 +0000] \"GET /projects/xdotool

/xdotool.xhtml HTTP/1.1\" 200 50112 \"http://www.semicomplete.com/projects/

xdotool/\" \"Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML,

like Gecko) Ubuntu Chromium/32.0.1700.102 Chrome/32.0.1700.102 Safari/537.3

6\"",

20 "data": "50112",

21 "explanation": "This line stands out because of the large response size of 501

12 bytes, which is significantly larger than most other responses in the

log file."

22 }

23 }
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