
Standardizing Data For Kafka Consumers
Wesley Jones Iowa State University

CPRE 550: Distributed Systems and Middleware
Ames, US

wesleyj@iastate.edu

Abstract—Scaling publish and subscribe systems face a variety
of issues. When these systems are integrated into a tiered data
pipeline data reliability can become one of the culprits. Different
systems that rely on data from a pipeline will either have to rely
on a local parser to assert or correct the data field types for
a contained record or rely on the client to correctly format a
record before sending it. The alternative to these two options is
a separate service to define data types and reform data into a
standardized format. These service create complexity and add
latency to a streaming pipeline.

I propose a more focused approach on transforming data as
it enters a pipeline. Using a data serialization service, such as
Apache Avro before arriving into a data pipeline, such as Apache
Kafka, means that withdrawing centralized data will be more
fluid across applications.

I achieved my objectives with the system design and software I
built, but the performance issues are likely insurmountable. The
average performance of the adjustment process is around 25% of
the total incoming messages. The most costly step is the parsing
the log data. There is plenty of potential for improvement, but
likely these will rely on constructing a method that is outside of
my objectives.

Index Terms—Apache Kafka, Apache Avro, logs, log parsing,
data pipeline, data serialization, data processing

I. INTRODUCTION

FOR SYSTEMS THAT GENERATE high volume se-
quential messages, such as logging, efficient storage and

searching infrastructure is needed. Essential components of
this infrastructure rely on publish and subscribe systems. These
systems handle unbounded data input and typically provide
records for a separate indexing service. This indexing service
offers the niceties required for handling large data: searching,
analysis, and data mining, among other varieties of application
focused utilities.

Scaling publish and subscribe systems face a variety of
issues. When these systems are integrated into a tiered data
pipeline data reliability can become one of the culprits. Differ-
ent systems that rely on data from a pipeline will either have
to rely on a local parser to assert or correct the data field types
for a contained record or rely on the client to correctly format
a record before sending it. The alternative to these two options
is a separate service to define data types and reform data into a
standardized format. These service create complexity and add
latency to a streaming pipeline.

I propose a more focused approach on transforming data as
it enters a pipeline. Using a data serialization service, such
as Apache Avro before arriving into a data pipeline, such
as Apache Kafka, means that withdrawing centralized data
will be more fluid across applications. This methodology is

geared to increase data extraction simplicity, not to improve
computation time per record (although that could be a natural
benefit). A typical pipeline for Apache Kafka without data
serialization built in can be described as this:

1) Producer creates a record
2) Kafka receives the data and stores it within a topic
3) A consumer receives the message from a topic
4) An application parses message for effective usage

a) This repeats for each application
The steps of 4 and 4.a can create additional overhead

for consuming data. Even in instances where infrastructure
includes a record parsing application at step 5 — one that can
be extended to additional applications in an environment —
this invalidates the functionality offered by a data pipeline.
To date, there are various custom codebases on GitHub that
work to achieve this type of functionality, but they are tied
to client-based services and offer specific domain solutions to
the authors.

Kafka brings a lot to the table when it comes to designing
a distributed system. Of the core components that distributed
systems are expected to offer, Kafka provides all of them at a
basic configuration [1], [2] (with caveats [3]. While it checks
all of the boxes of transparency, reliability, interoperability,
scalability, dependability, and security, it has no way of
enforcing that to the systems implemented on top of it.

A. Objectives

1) Design a system that runs on top of Kafka and ensures
data offered to consumers is standardized based on the
content of data ingested.

2) Analyze each message so that all data within a defined
Kafka topic can be consumed with the same technique.

3) Construct this to happen within the Kafka cluster so
that no external services (aside from producers and
consumers) are required.

In this model the parsing will happen within the Kafka
cluster instead of in an external environment and the stan-
dardization templates are both automated and self-contained1.

I evaluate processes for pre-pending Apache Kafka2 with
a data schema or data serialization process that can ensure
extracted records from Kafka are fully useful at the time
of extraction. This process involves interpreting incoming
data and programmatically defining a data schema. I utilize

1See the code repository here: https://github.com/iamwpj/kafka-types
2https://kafka.apache.org/

1

https://github.com/iamwpj/kafka-types
https://kafka.apache.org/

Apache Avro3 for schema templating. Once this is imple-
mented, records consumed from Kafka should be filed into
a standardized schema.

II. BACKGROUND

Apache Kafka is a message queue that supports asyn-
chronous, buffered inputs (called producers) and reliable real-
time output by subscribers (called consumers). The design of
Kafka was based around short term log management — a
shared system that would allow for offline processing by some
consumers and rapid real-time responses by other consumers
[4]. The service is built on Java and utilizes a series of
abstraction layers to provide transparency and durability of
the incoming messages.

There are two main roles that a node in the cluster can
operate as: broker and controller. These roles are assigned
in the configuration. During cluster startup any nodes eligible
for controller will participate in a vote. There have been mul-
tiple iterations of Kafka controller election formats. Apache
ZooKeeper was required as a standalone service alongside
Kafka until newer (post-2020) releases. This system operates
as a general purpose coordination layer in distributed systems
[5]. Because of some of the guarantees that ZooKeeper pro-
vides it is still popular in highly performant and distributed
Kafka set ups. Newer releases of Kafka implement a bespoke
coordination service: KRaft, based on the Raft consensus
algorithm [6], [7]. The consensus system maintains metadata
is appropriately positioned to host cluster controller elections.
KRaft deviates from Raft by relying on a pull-based system of
voting to establish consensus, but shares a similar group-based
approach to maintaining metadata confidence.

Brokers in a Kafka cluster handle data. They support the
necessary bucketing required by the data ingesting processes
and server to abstract the data storage process away from the
file system and network interface simultaneously. The broker
system offers a transparent method of subdividing larger sets
of data (more than would fit on a single cluster node) across
multiple nodes. It is through the subdividing that the distribu-
tion can achieve redundancy. Each broker coordinates which
topics and partitions it holds. This coordination (performed
through metadata consensus) ensures that required replicas of
the data are stored on different brokers [4]

Brokers are the underlying data storage denotation. They
are independent of the logical categorization that is applied
to the overall storage system — that of topics. When data
is produced and written to the cluster it is inserted into a
topic. The topic holds security, organization, and sometimes
data definition policies. When data is read from the cluster, it
is consumed out of a topic [2].

Apache Avro is a utility that runs will conform data to a
specified standard (defined in Avro IDL). The data is serialized
using a JSON defined notation, and the underlying system
processor can be built into a variety of applications as needed.
A common technique to implement Avro into a Kafka cluster
is to have a intermediary service running that provides pre-
built templates to Kafka producers to perform encoding. Once

3https://avro.apache.org/

Fig. 1: A common setup for a data pipeline. This involves six steps
with the assumption being that the Avro templates lay outside of the
Kafka system.

the brokers make the message available to the consumers they
will require the schema to decode the message. This process
results in some “back and forth” communication that, aside
from adding latency to real-time streaming, can increase a
systems’ complexity, thus reducing reliability and potentially
recover-ability.

III. RELATED WORKS

Kreps et al. introduced Kafka in 2011 as a dedicated
distributed messaging application for log handling in 2011
[4]. They specifically designed the service to work with
Apache Hadoop. Their efforts focused on provide a reliable
distributed system with transparent data storage. The software
is augmented by an API that offers easy extensibility. The
authors provide benchmarking and break down the technology
that allows Kafka to maintain performance in high throughput
scenarios.

Zhang et al. confirmed the performance capabilities of
Kafka and offered insight into it’s viability based on extensi-
bility and community support [8]. For the case here, Zhang et
al. provide a standard expectation of performance for a Kafka
pipeline. I found that Kul and Sayar provided useful discussion
on applications of Kafka. They describe the importance of
pub/sub systems in microservices, an efficiency focused field
[2]. It is likely that extending the data pipeline process with
better serialization will help to reduce latency in microservices.

There is some important discussion in this space when it
comes to handling streaming inconsistencies. The common
methods of addressing collisions in messaging applications can
also provide a reference for other in-stream adjustments. Sax et
al. offered a method for addressing inconsistencies by creating
a dual stream approach: one to handle physical ordering
of messages, another to handle logical ordering [9]. Their
methods offer integrated features such as agg or flatmap
which allow transformations during the reconciliation process.
Their approach does not apply directly to my goals since
their primary focus is to address variances in timestamp and
ordering data.

2

https://avro.apache.org/

Offering some explanation for “missing” features for Kafka
as a reliable commit log service, Rooney et la. describe Kafka
processes in depth [3]. The researchers describe the processes
of Kafka in regards to a distributed replication system. Their
discussion shows that Kafka is a piece the data storage and
pipeline system — not to be mistaken for something more,
specifically calling out its shortcomings with transactional
consistency, coherence in the contents of a Kafka topic, and
compliance for tracked metadata.

Narrowing my focus to data serialization I found that Viotti
et al. provide an evaluation of available serialization applica-
tions [10]. This survey includes notes on both Protocol Buffers
and Apache Avro. When it comes to processes of serialization
within a distributed system I found that Munonye et al. offered
a walk through of various implementation techniques for
serialization systems [11]. For my research, I drew from their
concept of buffered serialization — where the serialization
process is a component of the distributed system (including
the schema).

Finally, since the implemented testing of this proposed
system design is focused on logs — primarily system logs,
there is research on performance and reliability capabilities of
various log parsing service or techniques. Zhu et al. present an
assessment of 13 tools with efficiency and accuracy rankings
[12]. Their analysis would also point to research resulting
in the Drain method which utilizes fixed depth tree-based
to progressively match components of log messages until a
reliable result is found [13]. In certain implementations this
method would get faster over running time.

IV. METHODOLOGY

My goal is not to benchmark the performance capabilities
of a framework data pipeline — for this reason I am relying on
an “ad-hoc” setup. I have implemented a cluster within a set
of small containers. I can create a baseline latency check and
measure against that to ensure additional processing does not
cause delays down the chain. Should my desired architecture
come to fruition more intensive capacity, throughput, and
deeper latency testing should be done on “industry” hardware.

Kafka offers many performance advantages, but it also
offers a simple way to implement a distribution of data to
many disparate systems. In scenarios where it merely extends
a traditional database or other data storage distribution the per-
formance advantages are secondary to the reliable distribution
infrastructure — this is the area where my evaluation lies.

Modern systems provide nearly complete coverage of “text-
based” management through tooling such as YAML config-
urations, continuous integration/continuous deployment, and
hosted code. You can find much of the detail and process
within my GitHub repository.4

A. System Design

Kafka offers natural horizontal scaling and through the
use of containers (and subsequently container orchestrates)
systems engineers can take advantage of large, vertically

4https://github.com/iamwpj/kafka-types

scaled servers. The efficiency of a cluster can vary by the size
of messages and quantity per buffer [14]. The container-based
system I have designed encompasses the following:

1) Container Host: I have a RedHat 8.9 server with the
RedHat provided package Podman5 installed. This operates
using the Open Container Initiative6 standard — ensuring that
it is fully compatible with other container solutions, such as
Docker. In my notes and configuration setup I often refer
to Docker, this is partly an oversight and partly because
on the server the commands for podman and docker are
synonymous.

2) Configuration: The container build process is controlled
via Podman Compose.7 This means that the entire container
infrastructure can defined in a YAML file for an automated
launch (which I have implemented). The containers enumer-
ated are:

• Three Kafka nodes, broker and controller eligible. Each
is with a unique address for accessing within the cluster
and cluster support systems, as well as an port exposed to
the container host for access from outside the container
defined environment. The containers are pre-built by
Bitnami, a popular packaging service for open source
projects.8

• An instance of Kafka-UI 9, an open source web interface
for viewing cluster interactions. This interface allows for
some minor cluster management as well.

• Three containers to facilitate metrics collection. These
are:

– kafka-exporter10, a utility to collect Java, system,
and Kafka statistics and expose them to a metrics
aggregator. This container is prebuilt by Bitnami as
well.

– Prometheus11, a popular time-series databases
(metrics aggregator). This container is built by
Prometheus.

– Grafana12, a popular graphing web application. This
services works well with the time-series database
to provide views of the collected metrics data. This
container is built by Grafana.

These containers will allow for both the efficient ingestion
of data, but enough performance analysis for ensuring that data
serialization will not affect processing.

B. Data Serialization

Typically schema conformation occurs outside a linear
pipeline. This can be helpful in situations where large data
messages could cause significant stream delays. In these cases,
a serialization process would have to remain external to
the pipeline stream until processing latency can be reduced

5https://podman.io/
6https://opencontainers.org/
7https://docs.podman.io/en/latest/markdown/podman-compose.1.html
8https://bitnami.com/
9https://github.com/provectus/kafka-ui
10https://bitnami.com/stack/kafka-exporter/containers
11https://prometheus.io/
12https://grafana.com/

3

https://github.com/iamwpj/kafka-types
https://podman.io/
https://opencontainers.org/
https://docs.podman.io/en/latest/markdown/podman-compose.1.html
https://bitnami.com/
https://github.com/provectus/kafka-ui
https://bitnami.com/stack/kafka-exporter/containers
https://prometheus.io/
https://grafana.com/

to the point that incoming messages are faced with delays
due to processing limitations. Common pipeline patterns set
ups involve several steps — often “doubling back” along a
trajectory, see 1.

Data serialization is performed by Apache Avro running
within a Python environment. This provides a low barrier of
entry for modelling the setup and offers enough performance.
On a test run during proof of concept the processing for of
a schema with two small samples relied primarily on CPU
resources (92%), this aligns well with vertical scaling of Kafka
clusters where the constraining scaling resource is typical
input/output (often, disk).

Listing 1: Log from a fake log generator. This is part of Phase 1.
<15>April 12 19:32:44 powlowski2164 quas[5150]: The

PNG pixel is down, synthesize the back-end
bandwidth so we can transmit the HTTP firewall!

Listing 2: Log file after applying grok pattern. Notice the string
formatting for the “pid” field.
{
"timestamp": "April 12 19:32:44",
"timestamp8601": null,
"facility": null,
"priority": null,
"logsource": "powlowski2164",
"program": "quas",
"pid": "5150",
"message": "The PNG pixel is down, synthesize the

back-end bandwidth so we can transmit the HTTP
firewall!"

}

Listing 3: Data deserialized from the Avro bytecode. Notice the
correctly formatted integer element for “pid”.
{
"timestamp": "April 12 19:32:44",
"logsource": "powlowski2164",
"program": "quas",
"pid": 5150,
"message": "The PNG pixel is down, synthesize the

back-end bandwidth so we can transmit the HTTP
firewall!"

}

To properly serialize data I had to build a two step phases:
1) Data is pulled from a Kafka topic and fields and values

are itemized. I chose to utilize the grok patterns method
and enabled in Python with a supporting library13. This
is essentially a sequence of regex patterns that help
to define field values into a JSON format. Adding
this layer can cause significant latency increases if the
amount of adjustments grows. For my part I limited
the processing three patterns for common Linux syslog
outputs. For production approaches a designed list of
formatters limited per Kafka topic would provide low-
latency feed back from this first stage. You can see the
raw log in Listing 1 and then the follow up result of
grokking in Listing 2.

2) Once there is a standard set of fields my script will
handle the extra fields, standardize the data types, and

13https://github.com/garyelephant/pygrok

Fig. 2: System design for this research.

serialize the schema. The results are shown in Listing
7. This layer will provide any filtering, relabelling, or
other small manipulations. This content is provided as
the message field to a new Kafka topic where it can
be consumed as a standardized format. I have provided
a deserialization example relying on the auto-defined
schema in Listing 3.

Additional details on Phase 1 and Phase 2 are provided in
the next sections, respectively.

C. Phase 1: Identifying fields with grok

An issue with handling various data inputs is identifying
fields and values. Disparate consuming systems attached to
a shared pipeline require a transparent should be able to
consume from a topic with complete confidence in the offered
schema. Since I am controlling the input format to represent
a design system, I can utilize a few grok statements with just
a small coverage of common system logs (RFC 3164) in this
case. For this pattern I utilized pygrok14 with a pre-configured
pattern covering the standard format.

My tool begins by running a consumer on an ingest topic,
receiving. The receiving topic can contain any variety of
data so long as the correct grok patterns for it are defined. An
example of these builtin patters, plus a catch all, is shown in
Listing 4. The Python library will return log files organized
by the defined fields in the RFC specification 15. The grok
patterns in this case a combined list of regex patterns that
combine to fulfill the standard.

Listing 4: Log grok patterns
RFC 3164
"%{SYSLOGLINE}"
RFC 5424
"%{SYSLOG5424LINE}",
Catch All
".*%{TIMESTAMP_ISO8601:timestamp}.%{SPACE}%{

GREEDYDATA:message}",

To demonstrate a system where there are a variety of
mismatching messages in a receiving topic, I apply each listed
grok pattern from Listing 4 to the message. I then count the

14https://github.com/garyelephant/pygrok
15https://www.rfc-editor.org/rfc/rfc3164.html

4

https://github.com/garyelephant/pygrok
https://github.com/garyelephant/pygrok
https://www.rfc-editor.org/rfc/rfc3164.html

fields returned by applied pattern and select for the highest
match, thus ensuring the most verbose log parsing is selected
to create a schema from. This code is shown in Listing 5.

Listing 5: Method to iterate grok patterns and match data. There are
three iterations here, the first is for the grok patterns, the next two
are in the process of calculating the maximum and finding it within
lists.

for pattern in self.all_patterns:
grok = Grok(pattern=pattern)
result[pattern] = grok.match(data)

Return the "best" result.
This is just the pattern with
the most field matches.

counts = [
len(result[i].keys())
if result[i] else 0
for i in result

]
idx, _ = max(

enumerate(counts),
key=lambda x: x[1]

)
return result[self.all_patterns[idx]]

D. Phase 2: Applying changes to a topic

Once the log is parsed, Phase 2 will handle generating
a dynamic Avro schema. This involves iterating the newly
grokked fields and defining them as a supported Avro data
type. There are a variety of options here, but each step will
cause CPU time and log flow latency. I kept my example
simple and iterated based on Python’s isdigit() function
(see this in Listing 6). If that field is found to match — the
data is re-encoded and a schema template is built. This process
is streamlined by removing “null” fields such as those seen
between Listing 2 to 3.

Listing 6: The process of identifying and relabeling fields in prepa-
ration for the Avro schema application. If this is not done then the
data will not fit into the Avro schema by it’s designed settings.

for i in data:
field_name = i
if data[i].isdigit():

field_type = ["int"]
data[i] = int(data[i])

else:
field_type = ["string"]

To speed up this process I only generated a new schema
when there was a variance in the field data. Before the template
would be constructed an identifying hash is constructed from
the JSON key values of the grokked message. The hash is
used to identify the schema template, and in the case where
it already exists, the tool can proceed to submitting to a final
topic. Generated schema are saved to a separate topic in Kafka
and the log messages are identified with the Avro template
name to ensure remote consumers can always identify the
proper schema.

Saving a to a separate topic is borrowed from the discussion
by [11]. By creating a more transparent pipe, I need to ensure
that consumers are reliably able to perform deserialization of
provided data.

Metric Value

Kafka Ingest Rate 8,000 msg/s per processor
Delay on Kafka Broker Commitment instantaneous*

Adjustment Processing Rate 1,750 msg/s per processor

TABLE I: Averages for various performance metrics.
*The instantaneous result for broker commitment has to do with
test throughput. Because of how Kafka commits messages to topics
(batches) [4], [15] my testing never resulted in a delay that would
have been caused by this process.

Matching grok pattern 1.97× 10−3 seconds (1970µ)
Schema application 3.57× 10−5 seconds (35µ)

Producer 2.45× 10−5 seconds (24µ)

TABLE II: Performance metrics for each stage from 50,000 message
iterations. Notice the significantly poorer performance for the grok
stage.

Listing 7: The encoded data from the Avro schema.
b’\x00"April 12 19:32:44\x00\x1apowlowski2164\

x00\x08quas\x00\xbcP\x00\xbc\x01The PNG
pixel is down, synthesize the back-end
bandwidth so we can transmit the HTTP
firewall!’

Once the schema is set, the data message is encoded (see
Listing 7 and the message is submitted to the fixed topic.
This is where consumers will access assimilated data.

V. PERFORMANCE

Performance is sub-optimal. The container cluster of Kafka
brokers (3 instances) appeared to be performant up to the
maximum test amount of 20,000 messages per second. This
performance was without any log processing set up and merely
a verification of the throughput capabilities of the system.
The designed system with two phases poses a significant
performance cost and (more importantly) imposes a significant
latency cost. This results in a maximum message rate of around
20% the total consumable messages. The breakdown of these
results are in Table I.

Digging into the processing to see where the source of
latency is occurring provides some positive news. The major
source of latency occurs during the grokking phase — some-
thing that shouldn’t come as a surprise given the “hammer-
like” methodology of regex patter matching. The required
cycle time for this step is about 100 times that of the other
two.

Similar to the aforementioned producing and committing
process — during testing of consuming the messages from the
fixed topic, there was never any delay. Message consumption
was able to happen at nearly real time, providing my tool was
not running. During runtime the consuming capabilities from
the fixed topic was the same as the Adjustment Processing
Rate average.

VI. DISCUSSION

A. Performance Improvements
While the results are disappointing, this run was a “first

effort”. The process converting logs inline with a standard

5

Fig. 3: A graph of the messages received by the Kafka brokers for
each topic, fixed and receiving. The skew indicates the amount of
deviation caused by the adjustment process.

Kafka pipeline in the “real world” is still a reasonable goal.
Here are some straightforward improvements that would likely
have significant effects:

1) Convert the data processing (if not all of the) code base
to a more performant language. Currently the Python
implementation faces limitations based on it’s single
process limitations and general performance degradation
from runtime. The design of the code would allow for
threading of each phase and ending in an asynchronous
submission to the Kafka topic making threading espe-
cially easy. There is no issue with ordering since the
messages either already contain a timestamp or the field
could be enforced with the provided programming layer
and the Avro schema.

2) Message parsing efficiency is an issue. There are two
instances in the current process that could result in
message parsing, the first is guaranteed: at the grok
stage. The second is partial, in the enumeration of fields
for the Avro schema auto-generation. In some cases,
when this is the first time the schema is encountered
all fields and values will be enumerated for generating a
new schema. These two enumerations are costly at scale.
It’s possible to interlace them with a rework of phase 1,
potentially saving cycles.

3) Grok parsing is likely a poor choice — no matter how
it is implemented. I reviewed some research by Zhu et
al. [12] and He et al. [13] that indicates the Drain, an
online log sequencer (capable of parsing logs from a
stream or pipeline), would be more reliable and likely
more performant. Extending beyond Grok or a similar
pattern matching technique has the downside of typically
requiring a standalone service. This could be designed to
allow for microservice-like processing, thus allowing the
code base and system design to remain nearly identical
to what is presented here, but the increased complexity
is inescapable.

VII. CONCLUSION

Message processing can be an arduous task for CPUs, but
also for humans involved with identifying and enumerating all

the various forms. For a controlled system no additional help is
needed: the application developer provides a standard message
and the human designs the matching schema, Apache Kafka
does the rest of the work. Too often this is no the case. The
full potential of Kafka is in the convergence of a variety of
data sources. Topics can partition the results, but at some point
a system or human requires data be organized and structured
for effective consumption. The ultimate goal is to reduce the
amount of computer cycles collecting, parsing, and distributing
this data requires.

I achieved my objectives with the system design and soft-
ware I built, but the performance issues are likely insurmount-
able. The average performance of the adjustment process is
around 25% of the total incoming messages. The most costly
step is the parsing the log data. There is plenty of potential
for improvement, but likely these will rely on constructing a
method that is outside of my objectives.

A. Future Work

• More analysis is needed of effective log parsing during
streaming to Kafka. Putting the parsing as soon as possi-
ble enables earlier schema applications — which provides
more reliable and concise data for every system down the
line. There is an advantage additionally in putting this
parsing centralized, thus the log cluster.

• A generalized pre-processing framework for Apache
Kafka would ensure effective transparency for application
and system developers working with Kafka. This type of
system would centralize the processing and reduce the
effort on producers and consumers. It would also ensure
more performance tuning capabilities for the cluster ad-
ministrators.

• Efficient Apache Avro schema auto-generation tools can
be created or improved. In some cases it would make
sense to handle this type of design alongside log parsing
techniques.

REFERENCES

[1] M. v. Steen and A. S. Tanenbaum, Distributed Systems, fourth edition,
version 4.01 (january 2023) ed. Erscheinungsort nicht ermittelbar:
Maarten van Steen, 2023.

[2] S. Kul and A. Sayar, “A Survey of Publish/Subscribe Middleware
Systems for Microservice Communication,” in 2021 5th International
Symposium on Multidisciplinary Studies and Innovative Technologies
(ISMSIT). Ankara, Turkey: IEEE, Oct. 2021, pp. 781–785. [Online].
Available: https://ieeexplore.ieee.org/document/9604746/

[3] S. Rooney, P. Urbanetz, C. Giblin, D. Bauer, F. Froese, L. Garces-Erice,
and S. Tomic, “Kafka: the Database Inverted, but Not Garbled or
Compromised,” in 2019 IEEE International Conference on Big Data
(Big Data). Los Angeles, CA, USA: IEEE, Dec. 2019, pp. 3874–3880.
[Online]. Available: https://ieeexplore.ieee.org/document/9005583/

[4] J. Kreps, N. Narkhede, J. Rao, and others, “Kafka: A distributed
messaging system for log processing,” in Proceedings of the NetDB,
vol. 11. Athens, Greece, 2011, pp. 1–7, number: 2011.

[5] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “{ZooKeeper}: Wait-
free coordination for internet-scale systems,” in 2010 USENIX annual
technical conference (USENIX ATC 10), 2010.

[6] D. Ongaro and J. Ousterhout, “In Search of an Understandable Consen-
sus Algorithm,” 2014, pp. 305–319. [Online]. Available: https://www.
usenix.org/conference/atc14/technical-sessions/presentation/ongaro

6

https://ieeexplore.ieee.org/document/9604746/
https://ieeexplore.ieee.org/document/9005583/
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro

[7] C. McCabe, “KIP-500: Replace ZooKeeper with a
Self-Managed Metadata Quorum - Apache Kafka -
Apache Software Foundation,” Jul. 2020. [Online]. Avail-
able: https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%
3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum

[8] S. Zhang and R. Shen, “Subscription merging in filter-based
publish/subscribe systems,” Z. Zhu, Ed., Singapore, Singapore,
Mar. 2013, p. 87687O. [Online]. Available: http://proceedings.
spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2010511

[9] M. J. Sax, G. Wang, M. Weidlich, and J.-C. Freytag, “Streams
and Tables: Two Sides of the Same Coin,” in Proceedings of
the International Workshop on Real-Time Business Intelligence and
Analytics. Rio de Janeiro Brazil: ACM, Aug. 2018, pp. 1–10. [Online].
Available: https://dl.acm.org/doi/10.1145/3242153.3242155

[10] J. C. Viotti and M. Kinderkhedia, “A Survey of JSON-compatible
Binary Serialization Specifications,” 2022, publisher: arXiv Version
Number: 2. [Online]. Available: https://arxiv.org/abs/2201.02089

[11] K. Munonye and P. Martinek, “Enhancing Performance of Distributed
Transactions in Microservices via Buffered Serialization,” Journal
of Web Engineering, Oct. 2020. [Online]. Available: https://journals.
riverpublishers.com/index.php/JWE/article/view/5725

[12] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R.
Lyu, “Tools and Benchmarks for Automated Log Parsing,” in 2019
IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). Montreal, QC,
Canada: IEEE, May 2019, pp. 121–130. [Online]. Available: https:
//ieeexplore.ieee.org/document/8804456/

[13] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An Online
Log Parsing Approach with Fixed Depth Tree,” in 2017 IEEE
International Conference on Web Services (ICWS). Honolulu, HI,
USA: IEEE, Jun. 2017, pp. 33–40. [Online]. Available: http:
//ieeexplore.ieee.org/document/8029742/

[14] A. Auradkar, C. Botev, S. Das, D. De Maagd, A. Feinberg, P. Ganti,
L. Gao, B. Ghosh, K. Gopalakrishna, B. Harris, J. Koshy, K. Krawez,
J. Kreps, S. Lu, S. Nagaraj, N. Narkhede, S. Pachev, I. Perisic,
L. Qiao, T. Quiggle, J. Rao, B. Schulman, A. Sebastian, O. Seeliger,
A. Silberstein, B. Shkolnik, C. Soman, R. Sumbaly, K. Surlaker,
S. Topiwala, C. Tran, B. Varadarajan, J. Westerman, Z. White,
D. Zhang, and J. Zhang, “Data Infrastructure at LinkedIn,” in 2012
IEEE 28th International Conference on Data Engineering. Arlington,
VA, USA: IEEE, Apr. 2012, pp. 1370–1381. [Online]. Available:
http://ieeexplore.ieee.org/document/6228206/

[15] G. Fu, Y. Zhang, and G. Yu, “A Fair Comparison of Message Queuing
Systems,” IEEE Access, vol. 9, pp. 421–432, 2021. [Online]. Available:
https://ieeexplore.ieee.org/document/9303425/

7

https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum
https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2010511
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2010511
https://dl.acm.org/doi/10.1145/3242153.3242155
https://arxiv.org/abs/2201.02089
https://journals.riverpublishers.com/index.php/JWE/article/view/5725
https://journals.riverpublishers.com/index.php/JWE/article/view/5725
https://ieeexplore.ieee.org/document/8804456/
https://ieeexplore.ieee.org/document/8804456/
http://ieeexplore.ieee.org/document/8029742/
http://ieeexplore.ieee.org/document/8029742/
http://ieeexplore.ieee.org/document/6228206/
https://ieeexplore.ieee.org/document/9303425/

	Introduction
	Objectives

	Background
	Related Works
	Methodology
	System Design
	Container Host
	Configuration

	Data Serialization
	Phase 1: Identifying fields with grok
	Phase 2: Applying changes to a topic

	Performance
	Discussion
	Performance Improvements

	Conclusion
	Future Work

	References

