WireGuard: Trusting Network Layer Authentication
in a New Protocol

Wesley Jones
lowa State University
CPRE Network Security, 530
Ames, US
wesleyj@iastate.edu

Abstract—WireGuard: a software layer virtual private net-
work you can use in the modern era. WireGuard is built into
the Linux kernel and supports necessary extensible options with
features like pre-shared keys, a configurable access control layer,
and flexibility of functioning on top of virtual interfaces. Can we
trust the network layer authentication (Layer 2) provided by the
routing and handshake in WireGuard?

Index Terms—WireGuard, VPN, cryptography, network au-
thentication

I. INTRODUCTION

WireGuard is a virtual private network (VPN) protocol and
subsequent software utility that deviates from some of the
expectations that standard technologies in this space have fol-
lowed since their inception. The protocol acts as a method of
communication to first negotiate a trusted connection between
two or more endpoints. In order to instantiate this trusted
connection, WireGuard relies on an existing software layer. It
was introduced in 2016 to a small group on a popular Linux
news site and mailing list. As the original software was defined
by its creator it features encryption and authentication. These
were tunneled using a virtual network interface established
within the Linux kernel [1]. WireGuard should not be confused
with a traditional VPN as it does not rely on the same
process of transmitting and receiving packets that a traditional
VPN does. Instead of waiting for the kernel to speak to
the application layer which then presents the payload to the
userspace, WireGuard implements an interface directly into the
Linux kernel. Using a software layer to manage trust on top of
this interface has little effect on the speed gains — transmitted
and received packets are able to be presented at near real-time
wire speeds [2].

The creator of WireGuard, Jason Donenfeld, focuses on
the dysfunctional state of Internet Protocol Security when
discussing motivations for the software and protocol. Donen-
feld suggests that while the principles of the Internet Protocol
Security protocol are sound, the implementation is challenging
and leads to unsafe systems because of the inherent hurdles in
the technology [3]. The inclusion of WireGuard into the Linux
kernel has been swift. Donenfeld provided a short explanation
of the software to a popular Linux mailing list in the summer
of 2016 and by March of 2020 the software had been merged
into the Linux 5.6 kernel [1], [4].

WireGuard is a serious tool, but it is moving fast. The
philosophy seems sound, but without enough real-world”
implementation can we trust philosophy alone?

Motivation

I have watched WireGuard’s progression as it moved from
a suggested kernel component to a commonly available com-
ponent of networking systems. After reviewing some of the
current writings on the topic I am left with questions that can
be summarized into one: can we trust the network layer au-
thentication (Layer 2) provided by the routing and handshake
in WireGuard? I intend to provide a in depth background on
the functionality of WireGuard since it is not considered tra-
ditional networking yet and I will also provide some analysis
on common discussions surrounding authentication security in
WireGuard.

Terms

o Initiator: The WireGuard participant who begins the
connection. This role is flexible and can change when
a connection is updated [2].

o Responder: The WireGuard participant who accepts the
connection. This role is flexible and can change when a
connection is updated [2].

« Handshake: The process WireGuard uses to create a
trusted connection. It involves the initiator sending the re-
sponder enough information to complete a Diffie-Hellman
key exchange process [2].

e Cryptokey Routing: A WireGuard specific method of
network layer trusted routing by relying on the previously
acquired handshake key to build routing connections [2].

o Roaming Mischief: A name given to a suggested vul-
nerability in the WireGuard protocol. This vulnerability
deals with changing the flow of traffic during WireGuard
connection process.

II. METHODOLOGY

In my reading, I sought to answer a few questions. While
much of the answers are subjective — the resulting analysis is
put forth to be objective in presentation with some subjective
discussion at the end.

1) Have the provided referenced materials fully explored

WireGuard in a way that provides enough background
on its network layer trust?

2) Does roaming mischief pose a threat? Is there potential
issues with trusting the cryptokey routing process if the
network authentication layer can be tampered with?

3) Should post-quantum threats be considered when assess-
ing WireGuard’s security offerings?

4) Is WireGuard a wise tool? Does it account for long-term
implementation needs?

III. LITERATURE REVIEW

WireGuard is still young. There are a few notable contrib-
utors to the study of this new protocol and its implications
in the network security space. This analysis combines many
previously uncombined resources. There are a handful of
technical discussions sourced directly from Donenfeld’s online
presence. These primary sources can fit in well against the ad-
ditional analytical articles. These articles typically rely on the
WireGuard white paper with technical background regarding
information security concepts from their relevant authorities.
The most common focus is on cryptography.

A. Works by Jason Donenfeld

Donenfeld is the creator of WireGuard. His white paper
is referred here many times — a trait shared among several
of the other sources [2]. The presentation and justification
of the technology is sensible. Donenfeld supplies two other
contributions to this paper from his mailing list, [4] and
[5]. Donenfeld provides more background through his posting
on LWN.net, a popular Linux forum [I]. Donenfeld is a
prolific developer and has contributed to cryptography and
security systems as an independent software developer and
researcher [6]. Donenfeld focuses on justifying the security of
WireGuard.

B. Contributions involving Peter Wu

References [7] and [8], involve Peter Wu, a research student
who has provided a thorough analysis of WireGuard. Wu
provides a broad overview of the WireGuard protocol, dissect-
ing the protocol, software, weaknesses, and countermeasures,
as well as some discussion about the post-quantum security
improvements [7]. Wu teams up with a group of researchers
to propose a tweak to WireGuard in “Tiny WireGuard Tweak”.
This paper focuses on the state of risks quantum system
pose to encryption. By capturing data now and storing it
until quantum decryption becomes available, it puts current
invulnerable systems at risk. It might be tempting to dismiss
this proposal, but Wu and colleagues argue that the risks are
closer than comfortable. The tiny tweak in question: add a
requirement for pre-shared keys [8]. Donenfeld acknowledges
this from the inception of WireGuard — implementers of the
protocol should take note [2].

C. Dowling and Paterson

Continuing with the cryptography analysis Dowling and
Paterson explore the viability of the cryptography system
imposed in WireGuard. Their review of the protocol supplies
authority to the previous topics offered by Wu and others.

Fig. 1. Example of commands to set up a virtual Linux network interface.

$ ip link add dev wg0O type wireguard
$ ip address add dev wgO 10.19.12.3/24
$ ip route add 10.0.0.0/8 dev wg0

They assert this review to be the first for WireGuard, a high-
level security review. A great deal is condensed into a succinct
discussion showing that the duo’s assessment of the protocol
security; ultimately urging the practice of expanding the key
exchange packets to outside the same scope as the session
keys exchange. Their premise for this assertion relies on a
modified process of testing WireGuard since they acknowledge
the implementation design does not allow them to separate
authentication (session) keys from handshake keys. This aspect
of trust changing from handshake to authentication phase was
of particular interest in writing this paper [9].

D. Venter and Eloff

Venter and Eloff approached information theory taxonomy
methodically many years before the creation of WireGuard.
They cataloged a selection of works at the time and itemized
which topics were covered in the conversation surrounding
security technology. This approach has provided a future-proof
work that offers context to the approach of deciphering which
attack surface to expect in differing applications. Their care
to separate proactive approaches from reactive helps to define
the current state of security considerations within networking
security (nearly two decades later!). Every good assessment
of an application starts with a firm grasp of the taxonomy —
something this reading does well. I was especially drawn to
their categorization of VPNs as a tangent from cryptography
in general, something WireGuard emphasizes. [10].

IV. How 1T WORKS

Overview

Review these brief steps. Further information follows that
will detail the components and ultimate expound on the steps
to provide situation context.

1) Create an interface and add routable networks to it.
It can be done using operating system kernel APIs or
in the newer (5.6) Linux kernels with the actual wg
interface option added [2], [4]. This implementation step
deals with bringing the protocol into the networking
stack of your device. You can see the examples of these
commands on modern Linux distributions in Figure 1.

2) Create client connection. This involves instantiating the
trust between clients. The WireGuard software layer
works to extend a set of infernal routing methods (called
”Cryptokey Routing”) based on this shared trust [2].
This implementation step is the authentication phase of
WireGuard.

Fig. 2. A simple diagram of the 1.5 RTT during the WireGuard handshake
process [7].

Initiator || Responder

Initiation: 148 bytes
_

Response: 92 bytes

«—

First: Packet Exchange
_

Virtual Network Interface

WireGuard’s integration with the kernel is purely a speed
gain. The route-based VPN functionality could exist in
userspace (as is common in other commercial and freeware
VPN solutions) [1]. This kernel integration is trivial to the
functionality of the networking aspects of WireGuard, so we
will set it aside.

Further research on exploiting kernel features to horizontally
attack WireGuard might be worthwhile. WireGuard in essence
is a virtual interface in the kernel. The process to create a
socket to receive and transmit from involves utilizing builtin
tools from the Linux kernel. Software exists that extends
WireGuard into BSD, MacOS, and Windows. In the sense
of functionality these all work the same. Treat the functional
aspects of “Linux virtual interface” to be all-inclusive to
the further development of WireGuard interactions. Security
implications per-OS is worth another paper.

Communication

WireGuard optimizes for efficiency. Messages are encapsu-
lated in a Universal Datagram Packet (UDP) and submitted
to an exposed port, initiator to responder. The handshake
to negotiate this connection is efficient (1.5 RTT, similar
to Transmission Layer Security 1.3) [7]. This can be seen
during the negotiation phase of the protocol between initiator
and responder. The creator chose to offload the burden of
establishing trust during the connection phase by requiring the
key exchange to occur out of band. This exchange requires
knowledge of the the connection point (network address or
domain name) and a static public key that will remain un-
changed, ideally generated and shared over a trusted network
[8]. The key is generated by instantiating the WireGuard
software layer on a client (remember WireGuard is flexible
between clients and servers — the client referred to here
could be a server.) See Figure 2 for a visual of the packet
exchange during a normal initiator and responder communica-
tion process. This handshake exchange works by the initiator
sending just enough information to create a Diffie Hellman
key exchange. The responder completes the request. The first
packet exchange provides a Transmission Control Protocol-
like acknowledgment (WireGuard is only UDP, do not misread
this comparison) to complete the trust between the pair. This
last packet exchange is debatable, since completing the trust

Fig. 3. WireGuard’s reconciliation process for an overloaded responder [2].

Initiator || Responder

Handshake Initiation: - Try 1

_

Cookie Response
-—

Handshake Initiation: - Try 2

_

Successful Response
-

First Packet Exchange

_

exchange in such a fashion implies that each party already
trusted each other [9].

In situations where the connection is unreliable the parties
remain silent until a successful request and response exchange
is completed. Unless the responder is under load there will
not be any effort to track or ban connection attempts. A
special process exists for situations where the responder is
unable to respond. The circumstances could occur as an
attempt at denial of service (simply with empty one-half
RTT communications from an initiator) or simply natural load
experienced by the responder [2]. Wu notes that constraints
within the Linux implementation along with more constraints
in the Go language software layer can result in a situation
where high traffic environments will rely on a retry response
method [7]. WireGuard protocol contains a process as follows
[2]:

« Initiator sends first packet for handshake negotiation.

« Responder is overloaded. Responder generates a cookie
with a time to live of 120 milliseconds. It provides the
initiator with this.

o Based on the standard settings for the WireGuard the
initiator will retry a connection to the specified responder,
providing the cookie response data.

You can see this process detailed in Figure 3.

Assuming an environment has this configuration imple-
mented correctly, two WireGuard clients will be able to
communicate across the Internet relying only on an exposed
UDP port. To handle reliable routing WireGuard introduces
cryptokey routing. Donenfeld describes the wg interface as
an interface that WireGuard performs cryptography over — he
is highlighting the seamless integration of cryptography into
routing and thus authentication portion of networking [1].

Recall that the out of band initialization is required to
use WireGuard. This process establishes a public key listing
on each member of a WireGuard connection. The public
key is added a routing table that can be utilized for access
control or any other expected network routing needs [2].
Since the key is required to decrypt the incoming message
from the initiator, network layer authentication is established
while access control mechanisms operate on the appropriate
routing. This does not serve to add more authentication, but,

interestingly, contributes to the general trust in the routing
since the routing table entry can contain correlated information
that has previously been verified.

Donenfeld provides a simple step-by-step process of this
send/receive chain. There are several points at which data is
dropped should it deviate from to standards. That includes
things like non-internet protocol packets within the received
data, packets destined to an unknown endpoint, and of course
access control restrictions on packet sources and destinations
based on the offered cryptokey [2].

It is tempting to keep digging into WireGuard’s routing
mechanics, but despite the protocol’s typical simplicity there
is a level of safeguards and intricacies here that warrant better
discussion outside of this paper.

V. THREAT SURFACES
Security in the Protocol

Peter Wu discusses this UDP relationship between initiator
and responder — continuing to list the security considerations
that come into play with the protocol running within UDP.
UDP might be thought of as a bygone protocol, but it is
uniquely qualified to handle WireGuard traffic. Technical
considerations come into play since the robustness offered
by the now more common, Transmission Control Packets in
favor of UDP, actually pose a threat to VPN and WireGuard
traffic. WireGuard must handle common UDP simplicity, such
as packet ordering and limited packet trust [7]. The secure
encapsulation process helps to ensure a network level security,
but WireGuard smartly pairs this protocol with an application
layer to extend network authentication up the stack. Using
application layer and network layer security in tandem ensures
a robust proactive approach to network security [10].

Those familiar with managing network security on the
user connection side might know a trick to ensure a safe
environment: block everything. Users who cannot access bad
decisions (fraudulent or insecure sites) will not access bad
decisions. Stepping back from this diminutive approach to
security for humans, protocols can be secured using a similar
cut-throat methodology.

o A unauthenticated request to the open UDP port will not

result in any response [2].

o A packet field that is either incorrectly filled (including
overfilled) or not filled is discarded [7].

o Special care was taken for timeouts and overload scenar-
ios. WireGuard implements a cookie-based approach to
these scenarios: only approving registrations for a short
duration provided the party has the correct token (cookie)
[2].

o A limited set of cryptography options. Instead of a stan-
dard plug-and-play approach to cryptography offerings,
WireGuard insists on a small set (ChaCha20Poly1305)
[2].

Quantum Analysis

A common thread is to assume a state (or any sufficient
large and capable) actor would collect and store captured

data for later quantum decryption. This assumes the standard
negotiation encryption methods of ChaCha20Poly1305 is able
to be broken within the time frame of quantum cracking
existing. Setting aside the complications of predicting the
future, our security first decision policies would tell us to
assume we will enter a post-quantum era where all previous
encryption methods are crack-able. Appelbaum, Martindale,
and Wu discuss this very scenario in their suggestion for
WireGuard: Tiny WireGuard Tweak”. They explain that his-
toric captures, even when currently unbreakable can become a
risk when quantum computing is available to literature hashes,
keys, and signatures [8]. The conclusion to their analysis: use
pre-shared keys (PSK). This tweak is subtle to implement and
since the age of internet has adjusted to widely distributed
Transport Layer Security certificates and keys, it is reasonable
to expect our trusted protocol layers would be shored up with
similar treatment. WireGuard comes with support for PSKs
— something Donenfeld highlights in his initial discussion on
the protocol [2]. The proactive methodology of both PSKs
and a very decisive cryptography standard can help to ensure
WireGuard’s longevity [10]. It might seem that the quantum
era poses a looming threat to non-PSK, but by embedding the
technology into the kernel and tightly controlling the software
packages the protocol can be changed via normal operating
system updates. Clever packaging systems would allow for
gradual adjustments to this security baseline; something cur-
rently done in systems like SSH by deprecating cipher suites,
except by explicit request from the client or peer [11].

Authentication

Donenfeld has been open about a potential corruption of the
WireGuard protocol when discussing the roaming component
of WireGuard. In a note to the WireGuard parent organization
mailing list Donenfeld argues the exploitation of roaming
functionality is at most trivial. He presents the process to
exploit the implementation, but argues the real-world func-
tionality does not gain the exploiter anything [5]. Dowling
and Paterson do not explicitly disagree with this assessment,
but from their analysis the entanglement of the handshake and
authentication/session keys is an issue. They focus on the the
reliance of the security on a first message sent by the initiator.
This process can jeopardize the entire handshake [9]. Their
concern could be founded.

The likelihood of this authentication being compromised
is low, but the cascading risk of a granted authentication is
real. The packet header contains verification data, but it does
not contain a second factor of authentication (remember the
efficiency of a 1.5-RTT handshake!) [2]. The reliance on public
key cryptography routing means that a packet that is trusted
is immediately routed. This process is expected on network
routing equipment, but it does depart from traditional virtual
interfaces, since these typically will rely on either a full-
fledged software VPN or the local firewall and route settings
for access control limitations [7] and [10].

A final contention, well publicized, deals with roaming mis-
chief. Donenfeld addresses this concept head-on in a mailing

list post [5]. The assumed process is this:

1) Alice initiates a connection to Bob. Eve intercepts this
(an active man in the middle attack). Eve then forwards
the message to Bob with her IP as the source of traffic.

2) Bob responds, again this is captured by Eve who for-
wards the message back to Alice, though again, changing
out Bob’s address for her own. A successful handshake
will be complete since Alice and Bob believe they are
communicating directly with each other. Eve is able to
snoop on the traffic however — acting as a silent proxy.

3) Alice might roam off the original network and again
reconnect later still relying on a forward with Eve to get
to Bob. At some point, a session timeout will remove
Eve from the negotiation process.

In that scenario, Alice and Bob would not necessarily know
they are being snooped on. Eve might feel clever with the
traffic captured, but since this is encrypted using a Diffie
Hellman exchange there is not any immediately tangible value
in it. Donenfeld is quick to point out that intercepting traffic
is not a unique trait on networks — calling into question
the viability of the attack as a whole [5]. In this process,
the suggestions by Appelbaum, Martindale, and Wu serve to
further guard traffic against post-quantum analysis [8]. There
is no reason to expect networks to be entirely free of traffic
monitoring either. In an idealistic sense roaming mischief
would be resolved, but as such the standard of un-monitored
traffic seems unlikely.

VI. DISCUSSION
On available literature content

I set out with a concern that this protocol being new enough
might not offer enough insight to potential threats. I was
concerned that the coverage of it would not hold up to scrutiny.
I believe it does hold up. I found several of the cryptography
sources very in depth for their field of interest, but a correlation
with this discussion is reliable when applying trust to the
network layer trust.

I suspect that there are many more areas to cover re-
garding WireGuard. I think the literature should focus on
WireGuard’s implementation within the Linux kernel as well
as WireGuard’s implementation within varieties of networking
situations. These questions for the future might be:

1) Does WireGuard scale well within crowded networks?

2) Analysis of the administrative benefits of WireGuard
versus existing common similar protocols and software.

3) Is the kernel implementation posing long-term risks for
maintaining security by extending the network interfaces
with another software layer package?

On authentication security and cryptokey routing

I am inclined again to agree with Donenfeld’s assessment
of the risks posed by a threat misusing the authentication
steps of the protocol as being lackluster [5]. The threat is
contrived at best. If there was a verifiable path to exploitation
(even of compromising components of the network security)

I would consider the roaming mischief proposal a potential
issue, but after reviewing the process I fail to see validity.
On paper the process to compromise the trust layer looks
weak and in practice it is virtually inaccessible. I have laid
out an attack such as this above. Stepping through what data
is exposed results in a meager return. The same Diffie Hellman
exchange we rely on for Transport Layer Security and Secure
Shell Protocol is more prone to expose data in a WireGuard
communication.

I included cryptokey routing within the discussion sur-
rounding network authentication. The reliance of out of band
enrollment to help build a table of routable destinations and
allowed sources is clever in my opinion. By populating the
route table with cryptokeys associated with IPs/ranges of IPs,
a layer of abstraction is achieved. This layer serving as both
the unique identifier in the table lookup and for access control
is a valuable level of efficiency. Administrators should be able
to assess WireGuard’s functionality easily — thus improving
the overall security of the protocol.

I recommend a more in depth discussion regarding potential
ramifications in imposing a software layer route on top of the
standard route tools built into the network.

On quantum analysis

I do not see anything remarkable in WireGuard’s coverage
of a post-quantum threats. The interest in this field is a
“hot topic” as the horizon almost certainly contains quantum
computing, but for a specific protocol that encapsulates into
existing architecture, the threat is unremarkable. WireGuard
implements a pre-shared key optional system — a method-
ology widely available throughout networked systems today.
As Donenfeld highlights, this is the endgame for today’s
mitigation against a potential future threat. [2]

In context of WireGuard’s inherent security benefits (or lack
thereof), I do not place quantum threats in the category of
viable. I do not seek to oppose the analysis and suggestions
provided by Appelbaum, Martindale, and Wu when offering
the tweaks to the protocol; they are right to suggest a re-
quirement of the PSK integration [8]. Assessing the network
security dilemma of the post-quantum world is a massive
undertaking and almost certainly if done today, would be
premature. This is well out of scope of this paper.

On implementation

Global networking has been around long enough that ex-
pectations for new entrants into the system networking stack
are expected to meet a litany of baseline standards. WireGuard
accounts for so many things since its inception is an honest
iteration of long-term existing models. WireGuard does not
seek to reinvent networking — and by extension networking
authentication — instead it continues to develop the market-
place of tools at the administrator’s disposal. This is a wise
position.

VII. CONCLUSION

Recent world events have changed the perspective of the
remote network access needs of computer users everywhere.

No network should be expected to be so isolated that all
authentication relies on physical presence. Those wishing to
remotely access networks will turn to VPNs and WireGuard.

I have confidence that a network administrator will en-
counter WireGuard over the next ten years. Short of sounding
like a market forecaster, I would propose that in an environ-
ment where computing is centralized to large global data cen-
ters organizations will rely on point-to-point communication
that has typically been owned by traditional VPNs. The effi-
ciency and ease at which WireGuard can be implemented and
maintained could prove to be a major success on distributed
infrastructure networks.

WireGuard is built into the Linux kernel and supports
necessary extensible options with features like pre-shared
keys, a configurable access control layer, and flexibility of
functioning on top of virtual interfaces. These features should
ensure the protocol will remain for the long haul.

REFERENCES

[1] J. A. Donenfeld. (2016, June) Wireguard: a new vpn tunnel. [Online].
Available: https://lwn.net/Articles/693015/

. (2020, June) Wireguard: Next generation kernel network tunnel.

[Online]. Available: https://wireguard.com/papers/wireguard.pdf

, “Wireguard: Next generation kernal network tunnel,” in Proceed-

ings 2017 Network and Distributed System Security Symposium. Reston,

VA: Internet Society, 2017.

. (2020, March) [announce] wireguard 1.0.0 for linux 5.6 released.

[Online]. Available: https://lists.zx2c4.com/pipermail/wireguard/2020-

March/005206.html

(2017, November) Roaming mischief. [On-
line]. Available: https://lists.zx2c4.com/pipermail/wireguard/2017-
November/001957.html

[6] Jason donenfeld. [Online]. Available: https://www.blackhat.com/us-
18/speakers/Jason-Donenfeld.html

[71 P. Wu, “Analysis of the wireguard protocol,” Master’s thesis, Eindhoven
University of Technology, Eindhoven, Netherlands, June 2020.

[8] J. Appelbaum, C. Martindale, and P. Wu, “Tiny wireguard tweak,” in
Progress in Cryptology — AFRICACRYPT 2019, J. Buchmann, A. Nitaj,
and T. Rachidi, Eds. Cham: Springer International Publishing, 2019,
pp. 3-20.

[9] B. Dowling and K. G. Paterson, “A cryptographic analysis of the
wireguard protocol,” in Applied Cryptography and Network Security,
ser. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2018, pp. 3-21.

[10] H. Venter and . Eloff, “A taxonomy for in-
formation security technologies,” Computers & Security,
vol. 22, mno. 4, pp. 299-307, 2003. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404803004061

[11] Openssh legacy options. [Online]. Available:
https://www.openssh.com/legacy.html

[5]

