
A Naive CNN Application to AI Generated Image
Detection

Wesley Jones Iowa State University
CPRE Digital Forensics, 536

Ames, US
wesleyj@iastate.edu

Abstract—Detecting generated images is an increasingly preva-
lent need in forensics. Convolutional neural networks (CNN) are
a model of AI training that predates the more popular usage
of transformers in popular language models today (e.g., GPT-1
and newer). I will continue to expand the application of CNN
models to image assessment by training a model that contains two
categories: real and synthetic human faces. This model will then
be utilized to assess a variety of images generated from various
methods (unknown to the trained model) of image generation. By
asses a naive implementation (one without in-depth filtering or
other image contexts), I am attempting to establish the feasibility
of a long-term solution to more simple pre-trained models that
can be used to AI generated image detection. This simplification is
made possible by both high quality datasets of real and synthetic
images for training, as well as higher quality images for testing
said model. One model utilized for generating testing images
performed at chance (50%), the other achieved a 100% prediction
rate. These scores could indicate that the issue that is causing
one model to fail predictions might be causing another to be
overly successful. More research into these types of consequences
is needed. The current research of applying CNN models to
generative image identification is focused on filters and sequential
analysis, but if issues presented in this naive approach are worked
out without relying on those approaches, a more robust path
forward for quicker and more robust identification could become
clear.

Index Terms—artificial intelligence, convolutional neural net-
works, images, models, forensics, detection

I. INTRODUCTION

CONTENT GENERATED by artificial intelligence (AI)
includes text, pictures, sound, and videos. These can be

wholly created utilizing models of AI intended for the purpose
of generation or be a composition of mixed mediums: both
“hand-crafted” by a human and augmented utilizing generative
methods. All media benefits from relevant provenance – of
course, this metadata should be accurate. Relying on human
capabilities to decipher the trustworthiness of media metadata
is not a feasible long term solution in the face of continually
evolving generative AI models.

It is worthwhile to constantly explore methodologies and
their feasibility for generated media detection. With each new
iteration of generative techniques, various components will be
vulnerable to detection. In the game of generative AI whack-
a-mole, a winner does not survive long.

A. About Convolutional Neural Networks
Convolutional neural networks (CNN) are a model of AI

training that predates the more popular usage of transformers

in popular language models today (e.g., GPT-1 and newer).
Networks trained with CNN models are capable of informing
generative adversarial networks (GAN) – the predecessor to
GPT-based generative methods commonplace today. To prop-
erly generate an image from text, AI relies on a deep set of
feature labels, preferably so deep they would have only been
generated using a neural network — CNN commonly. With
these labels the appropriate approximation of an image can
be built out, different models will vary during the generative
process, but these models often relying on an existing feature
list. A CNN operates as a layer within a neural network to
apply a filter on an image. This filter works to determine
whether a filter is met, first in a small part of the selected
pixels, then scaling out. This granularity can lead to specific
filters returning successfully [1], [2].

Reviewing the advantages of the CNN’s granularity as well
as it’s “hands-off” approach to filtering this particular model
should be an effective means of quickly detecting a synthetic
image from a real image. This process should not rely on
itemizing characteristics that individual generative models are
vulnerable to, rather it should focus on a binary filter system
in the CNN layer: is the image real or synthetic? To test the
feasibility of a broad application of this method I will set
up a simple CNN model filtered on a set of real and synthetic
images. I will test this naive approach by providing a variety of
potential real or fake images from different models, qualities,
and compositions (e.g., synthetic components to an otherwise
real image).

B. Objectives

I will continue to expand the application of CNN models
to image assessment by training a model that contains two
categories: real and synthetic human faces. This model will
then be utilized to assess a variety of images generated from
various methods (unknown to the trained model) of image
generation. By assessing a naive implementation (one without
in-depth filtering or other image contexts), I am attempting
to establish the feasibility of a long-term solution to more
simple pre-trained models that can be used to AI generated
image detection. This simplification is made possible by both
high quality datasets of real and synthetic images for training,
as well as higher quality images for testing said model.

1



II. RELATED WORKS

I will walk through a few basic models of image generation
to provide context for the choice of synthetic comparisons I
provide during the testing phase.

A. Methods of Text to Image Generation

As discussed in the CNN background, a core element of
each of these methods is the data set that depends on an
accurately labelled list of features within sample images to
build a trained model off of. In this way, a very simple
explanation of all generative models would involve first the
definition of features and second a process akin to splashing
color at a variety of canvases until the third step could
be passed, the evaluation of whether this image meets the
requirements put forth.

GAN is an extension of a neural network implementation.
The process for generating an image with a GAN works by
generating noise (incorrect) images while simultaneously eval-
uating “real-ness”. As this evaluation progresses a threshold
is met and enough data has been added to a potential image
that it could be construed as fulfilling the request. GANs rely
on a few models to generate images, all neural network based
[2].

Another method came from the development of transformers
[3] as a means to compute AI models. An existing technology
called discrete variational autoencoder (dVAE) was applied in
a more efficient manner which allowed Ramesh et al. [4] to
create a large enough set of transformers to give a pre-trained
AI model a selection of qualified images to choose from that
would accurate represent the prompt.

Arguably the lion’s share of text to image generation today
is coming from the diffusion models. This process solves for
common limitations of traditional GANs such as downsam-
pling (fuzzy or unclear components). In 2022, a group from
CompVis [5] launched Stable Diffusion [6], a collaboration
borne out of their research into diffusion models and Stability
AI [7]. Diffusion models involve some convolutional process-
ing, but do not build a network that previous GAN models
required to generate images [8].

B. Methods of Image Detection

A straightforward approach to predicting the real-ness of
an image is to identify vulnerabilities in the generative ca-
pabilities of the originating model. Amerini et al. [9] an-
alyzed deepfake videos for frame-to-frame indicators. They
looked specific at optical flow, a vector measurable across the
frames that could create a quantifiable indicator of whether
a video was real or fake. Their evaluation determined that
facial features provided a reliable result — enough to justify
continued research. In this paper, the analysis is restricted to
images, but specifically facial features. This work is continued
by Nassif et al. [10] who evaluated the efficiency of this
method with modern hardware. They found optical flow to
be a reliable indicator and were able to provide statistics for
models’ accuracy based on training time.

In 2019, Wang et al. [11] performed a study on CNN
generated images that displayed an ability to detect images

as they classified “easily”. The authors relied on a generative
model (ProGAN implemented with CNN) to synthesize fake
images from a real source. They compared these in a binary
process and searched for evidence of fingerprinting, or a
reliable method that would offer a clear indicator that an
image has been generated by a CNN model. They determined
that their accuracy was reliable enough that CNN generation
processes should be considered identifiable, at least in the short
run. A shortcoming of this study is the narrowness of the fake
image data set. Relying on exact originals to the faked images
might make the outcomes unreliable when applied to an image
that the neural network has never seen before.

This paper’s approach is motivated by a similar process
laid out in [12]. Hulzebosch et al. focus on “real world”
applications. Their techniques avoids the short comings of a
potentially limited data set and adds a human identification
factor. They focus results on taking an image from an unknown
model and also an unknown post-processing model. This
research includes an element of human trials — where in-
dividuals are asked to identify a synthetic image from a group
of 18 potential images. The researchers provide quantitative
results indicating that human-based judgement is unreliable.
Their weighted algorithmic performance (controlled across
benchmarks and studies) only performed slightly better than
humans.

Bird and Lotfi [13] used Stable Diffusion 1.4 (similar to
here) to create synthetic images to test with. These researchers
analyzed the CNN classification process using Explainable AI
— a technique created to identify why an AI handled data
the way it did. They used this to optimize their analyzing.
The image dataset was a selection of random categories from
their own generated dataset and analyzed at a resolution of
512x512. Their results show 92% accuracy.

III. METHODOLOGY

I am opting out of image pre-processing techniques aside
from the required process to load data into a tensor for
modelling. Based previous readings, I will also utilize a larger
training image size (1024x1024). The final methodology that I
am relying to set my results apart is utilizing a better selection
of “real world” images both for training and for testing. In this
case, a real world image is one that could be plausibly found
online as passing for a person.

The process to test my naive implementation is as follows:
1) Identify testing images of real faces and previously

generated fake faces. Train a CNN model using these.
2) Run and save the model. This process timing is depen-

dent on the amount of images being analyzed.
3) Create images to test with. These are high quality

generated images that would typically require scrutiny
to identify as AI generated.

4) Load the saved model and gather prediction results.

A. Model Training Images

For real images, I am relying on the same common library
utilized in many resources to-date, the Flickr Faces High
Quality (FFHQ) Dataset [14] . It was generated by Nvidia

2



Purpose Image Count Classes

Training 112,952 2
Test 16,136 2

Validation 32,273 2

TABLE I: Image counts for stages of model training.

Labs for their own research into machine learning. This dataset
has been made available for download and contains 70,000
images at 1024x1024 resolution of faces scraped from the
Flickr website. FFHQ contains 70,000 images.

For synthetic images, I found a dataset offered that com-
bined a common source of faces generated utilizing StyleGAN,
but this set has been updated using Stable Diffusion 1.4 by
Beniaguev through an extensive process (at no point were real
images of faces utilized to create this dataset) [15]. Ideally this
should better prepare the trained CNN on potential unknown
model generated images. This dataset contains 92,151 images.

The total images utilized in training is 162,151, comparable
to Bird and Lotfi’s study of CIFAKE [13].

B. Hardware
The CNN model was trained with Nvidia A100 Tesla card

in a high performance computer cluster. The training process
required 14.45 hours and benefited from only negligible at-
tention granted to optimization due to approaching this topic
as a naive effort. Once the model is generated and saved,
predictions can occur on indiscriminate hardware so long as
the necessary Python packages are loaded and the CPU has
enough power to provide predictions in a reasonable amount
of time.

C. Naive CNN Model
The CNN model is built using Python and TensorFlow [16].

The model is trained using the Keras method [17] and uses the
Adam optimizer. Two labels are defined: “real” and “synth”.
Three datasets per label (“real” and “synth”) are defined, one
for training, validation, and testing each. The trained model is
saved as a keras object that the prediction query is evaluated
with. The reported accuracy during the training from a subset
of validation real and synthetic images was > 99%. The
training was preset to run over 15 epochs, but would have been
sufficiently training starting around 10, see Fig. 1. For counts
of the images used in each stage of building the model see
Table I. More extensive training would have been necessary
if more than two parameters were specified, as evidenced by
[12]. For counts of the images used in each stage of building
the model see Table I.

Once the run was complete, I saved the model using a
feature of the keras library. This is loaded later to predict
using – resulting in a very fast turnaround (prediction results
averaged around 175 milliseconds per image on low frequency
server CPU). The saved model size is around 18 megabytes.

D. Prompts for Generating Test Images
Through some research and proof-of-concept testing, a I

determined a generic prompt to generate professional head

Fig. 1: Accuracy rates during model training over 15 epochs.

shots, seen in Fig 2. I wrote a small program1. Since the
breakdown of the training libraries was purported to be diverse
[14], [15], I needed to verify with a diverse set of high quality
face images. Both of the models discussed in sub section III-E.
The selected genders and races are provided in table II. The
produced results from both models are high quality, but the
content relating to the prompt tells another story. Some of the
concern images can be see in the provided GitHub repository,1

but I will lay out the more obvious issues here.

• Both models produced the same type of result for a
prompt asking for “Native American”. In this case, the
models (both SDXL Turbo and Fast SDXL) are relying
on the same parameters encoded in the underlying Stable
Diffusion generation [18]. This means that the prompt
generates a similar output, with the main difference
between them relying on filters applied during post-
generation processes. To this end: the cultural insen-
sitive results persist across models. Refer to Figure 3
for examples. These same concerning results occurred
through other prompts (notably again in the African man
generation – where the shoulders are bare).

• Both models rarely generated either androgynous or mas-
culine presenting faces when prompted for a “person”. I
had expected this to be a more equitable – tossup – be-
tween the more presumably common categories of “man”
and “woman”. I could not find a prompt that generate a
cisgendered face, or even one that could be construed as
such. There’s clearly a categorization limitation in these
models when it comes to gender identity.

The models have warnings about their applicability to reality
[18]. In this case, the designers are correct to warn the users
of these models that the results are a representative generation
of the provided prompt. The Fast SDXL implementation of
the model provided four responses per request. For these I
simply saved all images and only ran the generalized “person”
attribute instead of using “woman” and “man”. This resulted
in a total of 49 images to verify my CNN model.

1See the Jupyter notebook in my code base for this process https://github.
com/iamwpj/naive-cnn-identifier

3



{race} {gender} looking directly at the camera
for a professional headshot taken using a
Sony A7 III camera with 1/250, f/1.4,
ISO 200 - FE 35mm 1.4 ZA - Portrait Style
and 6200 K

Fig. 2: Prompt for generating test images from listed AI models. The
bracketed values (race, gender) are rotated to generate various
race and gendered faces.

Genders Races

Man African
Woman Asian
Person Black

Latinx
Middle Eastern
Native American
White

TABLE II: List of genders and races itemized per prompt.

E. Models Generating Test Images

To generated test images I relied on popular technologies
available to the public for either “beta” testing or as part
of their licensing. Both technologies are continuations of the
diffusion process by Stability AI [6] – SDXL [18]. SDXL
enhances the underlying diffused images during the generative
process to allow the model the ability to generate at a finer
grain than previous training of Stable Diffusion model ver-
sions. As discussed above in section III-D, there are inherent
issues with the faces produced in these models.

Both datasets were quick, averaging a result (or four) from
the input prompt within seconds (typically less than 10). See
Table III for the counts from each model.

1) SDXL Turbo: This model has been enhanced from the
open model SDXL by Stability AI2, generated on the hosting
partner Clipdrop3, utilizing the same underlying data as the
first version, but optimized to provide low latency generation,
even updating as the prompt is input. While the output
was high quality in many ways that AI face generation has
traditionally suffered, this speedup causes all generated faces
to appear similar with each prompt, see Fig 4. The generated
images from this model are watermarked. This was an initial
concern, but I opted to wait for results and if I determined this
marking had an adverse affect on the output (i.e. made it too
easy for the model to predict it as synthetic), I would seek a
better solution.

The images supplied by this modeled offered in a resolution
of 512x512. Since the tensors expect images of 1024x1024,
some pre-processing to adjust sizing is preformed during the
prediction testing.

2https://huggingface.co/stabilityai/sdxl-turbo
3https://clipdrop.co/stable-diffusion-turbo

Model Count

Turbo SDXL 21
Fast SDXL 28

TABLE III: Count of test images generated using each model

(a) “Native American woman” via
SDXL Turbo

(b) “Native American person” via
Fast SDXL

Fig. 3: The cultural representation of Native Americans presents the
inherent biases in this categorization of human faces. In the process
of generating faces specific to an indigenous group, the results are
restricted the biases encoded in the model’s parameters.

2) Fast SDXL: Fast SDXL4 is based on the same core
model provided in SDXL Turbo [19], [20]. This iteration
instead benefits from the post-processing efficiencies of a
new hardware generation of tensor processing units. The
implication of the announcements for both the Fast SDXL
and Google’s TPUv5e is that inferences during the diffusion
process should improve the resulting image quality. It’s not
clear that either party expects a better image in relation to the
prompt.

The images supplied by this model are offered at 1024x1024
and required no pre-processing.

IV. RESULTS

I supplied 49 images (Table III) to the model for confirma-
tion. Predictions in this model are made as a value between 0
and 1. I set up my output to provide an easy interpretation of
anything over 0.5 to determine as real and anything under that
determine as synthetic. The results of this run showed that a
naive model is too unpredictable to provide any reliable role
in the detection process aside from being a first-stage filter.
Of the 49 images provided 25 were correctly predicted, and
24 were incorrectly predicted. Review accumulated results in
Tables 5 and

Typical predictions were recorded confidently by the
model – regardless of the accuracy. The raw data can be
viewed on GitHub 5. The majority of correct predictions
occurred utilizing the test images created by Fast SDXL

4https://huggingface.co/spaces/google/sdxl
5https://github.com/iamwpj/naive-cnn-identifier/blob/main/stats.ipynb

4



(a) “Latinx man” (b) “Latinx person”

(c) “Middle Eastern man” (d) “Middle Eastern person”

Fig. 4: Collection of similar faces generated from SDXL-Turbo.
Notice how (a) and (b) are nearly identical? There are small
aberrations between each generation (see the light in the eyes, for
example), but these are minute. The same result is true for prompt of
(c) and (d).

III-E2. These are the images that relied on up-scaling tech-
niques to match the expected tensors. This modification
must have played a significant role in the reliability of
output, but was not uniform. The Native American selec-
tions (na_[man,woman,person].jpg) were all flagged
as real.

V. DISCUSSION

A model that detects 50% correct should not immediately be
dismissed. This matches an experience by Wang et al. [11],
where they sought to isolate shallow methods of generated
images. However in this case, there seems to be a processing
flaw. After consulting the results, I preformed a series of
predictions using known images (e.g., images I had taken)
and attempted to estimate most likely cause of error. These
tests performed closer what a “production” detector would
expect. Of the eight provided images six were successfully
identified as real or synthetic. Ultimately such a small sample
size combined with the inclusion of two images also included
in the model training data, makes these results irrelevant to
any bigger picture conclusions.

Taking this improvised testing into consideration, I will
outline a couple of issues with the larger image tests prediction
outcomes.

A. Resizing

A defining difference between the test image data is sizing.
All of the images supplied in 512x512 format were incorrectly
predicted. The process undertaken to perform a resizing should
have resulted in a lower quality image, but not one that was
appreciably different in regards to how the CNN model would

see it. The adjusted prediction images can be seen in GitHub6.
To soften any approach the tensor resize function7 might have
exerted on image. I tested a run relying on general image
library in Python (Pillow8) to resize and one with the default
tensor library resizing. Neither changed the output predictions.

Conclusively determining the resizing process was a culprit
contributing to mispredictions has been challenging. There are
outliers in both my one-off (see Table IV and the aforemen-
tioned results). There is also the case of the three images
from the otherwise correctly predicted library — the Native
American faces from the SDXL Turbo model. These photos
features significant aberrations from the trained model images,
items such as feathers, extensive jewelry, and headbands,
review the complicated examples in Figure 3.

In 2019, Monasse detailed the adjustments that occur in an
image affected by a bilinear filter [21]. The likelihood that a
shortage of pixels would cause this filter to upscale the image
in a way that affects the prediction seems poor. If it was the
case that pixel-by-pixel adjustments led to cascading failures
the results might have had less confidence in the predictions.
I removed the most confident results and isolated > 0.1 to
< 0.99 in Figure 7. This chart isolates 9 of the 49, > 20%
of the results are less than 99% confident, but only the Fast
SDXL model had to undergo resizing. Isolated to the model
of interest, Fast SDXL, this is 9 of 21, or just over 40% of
the total are less confident.

Resizing could have play a role in these incorrect predic-
tions, but it is likely only a factor in the big picture of utilizing
a naive model for AI generated content detection.

B. Reliance on binary choice

The confidence of the model’s predictions regarding Turbo
SDXL is commendable, but likely will not scale beyond a
narrow domain. This is because my trained CNN model is
restricted to a binary choice by the input parameters. Common
research in this field on filters [11], [12] or in the case of video,
variations in an image sequence [22] to establish a non-binary
choice. Adding filter provides layers — a composition of the
prediction result would allow for measuring the output from
each layer in order to draw a conclusion. The increased data
offers the design more flexibility. In a case sequence of filters
it is possible that the positive identification could be a smaller
or broader range of the average returned by the filters.

In my CNN model, there is little opportunity to shift these
numbers to tailor for the accuracy of the domain specific
identification of a face. For example, moving the positive
identification of a synthetic image to be < 0.33 does not
significantly change the classification of my results (it affects
none of the model’s predictions). Because of the passive nature

6An example of an image provided at 1024x1024 and thus left
untouched: https://github.com/iamwpj/naive-cnn-identifier/blob/main/predict
modified/asian person.jpg. An example of an image initially loaded at
512x512 and then modified: https://github.com/iamwpj/naive-cnn-identifier/
blob/main/predict modified/asian person 1.jpg

7https://www.tensorflow.org/api docs/python/tf/image/resize – This func-
tion applies a filter to either downscale or upscale an image. The default
filter is bilinear.

8https://python-pillow.org

5



Fig. 5: Test prediction results overview. Notice the similarities in the exact prediction results. If the model determines an image is real or
synthetic it is very confident in this result.

Fig. 6: This plot highlights the performance of each model. This is
not an incremental model - the x-axis indicates the index number of
an image, a counter that increases as subsequent images are tested.
The x-axis indicates the dividing line. Prediction values < 0.5 are
determined to be real. A perfect test would result in all predictions
being > 0.5.

of feature abstraction in CNN it is well suited to be paired with
enhancements to produce more granular results [1].

VI. CONCLUSION

A. Future Work
There is ample opportunity for tuning the CNN model train-

ing and prediction architecture. With a reliable set of model
settings and better performance optimizations this model could
be utilized as a “just in time” solution — where an image can
be quickly sent to verification and the result returned as a user
interacts with the resource.

As pointed out in Section V-B, there is room to identify
methods of adding variables to the prediction confidence
values. Such additions might look like:

• Positive identifications of non-domain subjects in the
image. Using a sequence of publicly available object

Fig. 7: Selected results focused on the middling predictions. Anything
falling below o.5 is considered a real image by the prediction.

identifiers this method could lower the confidence of a
false “real” prediction.

• General purpose fake image detection CNN models could
also offer an adjustment to the confidence score. This
is similar to the filter, however, since it relies on pre-
trained models instead of just-in-time processing it should
be more salable.

• The CNN model trained relied on high quality input
images, but these are common in all models trained,
potentially even in models trained to generate images.
A study of the effect of this source pollution would
be wise as these models continue to distillate. Even in
this research one shared source model produced two
generative models with significantly different prediction
output scores. Alzubaidi et al. provides some context here
— a deep CNN (DCNN) would extend to not only a
deeper learning, but can also be a way to train source

6



Image Source Expected Prediction Actual Prediction Exact Prediction Dimensions

morgan_freeman-wikipedia.jpg real real 0.0000000000 3006x2253

burt_reynolds-wikipedia.jpg real real 0.0000042566 675x460

asian_woman-openjourney-v4.jpg synthetic real 0.0095512047 512x512

me_person-stabilityai-SD-XL-1.0.jpg synthetic synthetic 1.0000000000 1024x1024

latinx_person-dalle-mini.jpg synthetic real 0.0001257265 1024x1024

me.jpg real real 0.0128671583 985x1103

litmus_real.png real real 0.0000000001 1024x1024

litmus_synthetic.jpg synthetic synthetic 1.0000000000 1024x1024

TABLE IV: I performed a series of tests to verify results against known image sources and with various degrees of sizing. All of these images
are disparate sizes, with cropping/resizing occurring in cases where the dimension do not match the expected size of 1024x1024. Image
sources indicate where the data originated from. To easily decipher results, I have highlighted the matches in green and the mismatches
in red .

models more efficiently [1]. By training many models and
then connecting them together you can scale horizontally
for more efficient training time and ideally provide more
informed prediction scores.

Ultimately the deciding factor on utilizing CNN modelling
technology for detecting generated images depends on pro-
cessing of input images, either through filters or additional
context. My results show a chance result across the board,
but become more promising if the testing images sourcing
is subdivided by model used to generate the images. One
model remains poor — Fast SDXL. The other achieved a
100% prediction rate. These scores could indicate that the
issue that is causing one model to fail predictions might be
causing another to be overly successful. More research into
these types of consequences is needed.

The current research of applying CNN models to genera-
tive image identification is focused on filters and sequential
analysis, but if issues presented in this naive approach are
worked out without relying on those approaches, a more robust
path forward for quicker and more robust identification could
become clear.

REFERENCES

[1] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan,
O. Al-Shamma, J. Santamarı́a, M. A. Fadhel, M. Al-Amidie, and
L. Farhan, “Review of deep learning: concepts, CNN architectures,
challenges, applications, future directions,” Journal of Big Data, vol. 8,
no. 1, p. 53, Mar. 2021. [Online]. Available: https://journalofbigdata.
springeropen.com/articles/10.1186/s40537-021-00444-8

[2] Z. Pan, W. Yu, X. Yi, A. Khan, F. Yuan, and Y. Zheng, “Recent
Progress on Generative Adversarial Networks (GANs): A Survey,”
IEEE Access, vol. 7, pp. 36 322–36 333, 2019. [Online]. Available:
https://ieeexplore.ieee.org/document/8667290/

[3] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention Is All You Need,”
2017, publisher: arXiv Version Number: 7. [Online]. Available:
https://arxiv.org/abs/1706.03762

[4] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford,
M. Chen, and I. Sutskever, “Zero-Shot Text-to-Image Generation,”
2021, publisher: arXiv Version Number: 2. [Online]. Available:
https://arxiv.org/abs/2102.12092

[5] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
“High-Resolution Image Synthesis with Latent Diffusion Models,” Apr.
2022, arXiv:2112.10752 [cs]. [Online]. Available: http://arxiv.org/abs/
2112.10752

[6] “Stable Diffusion,” Nov. 2023, original-date: 2022-08-10T14:36:44Z.
[Online]. Available: https://github.com/CompVis/stable-diffusion

[7] “About.” [Online]. Available: https://stability.ai/about

[8] R. Corvi, D. Cozzolino, G. Poggi, K. Nagano, and L. Verdoliva,
“Intriguing Properties of Synthetic Images: From Generative Adversarial
Networks to Diffusion Models,” 2023, pp. 973–982. [Online]. Available:
https://openaccess.thecvf.com

[9] I. Amerini, L. Galteri, R. Caldelli, and A. Del Bimbo, “Deepfake Video
Detection through Optical Flow Based CNN,” in 2019 IEEE/CVF
International Conference on Computer Vision Workshop (ICCVW).
Seoul, Korea (South): IEEE, Oct. 2019, pp. 1205–1207. [Online].
Available: https://ieeexplore.ieee.org/document/9022558/

[10] A. B. Nassif, Q. Nasir, M. A. Talib, and O. M. Gouda,
“Improved Optical Flow Estimation Method for Deepfake Videos,”
Sensors, vol. 22, no. 7, p. 2500, Mar. 2022. [Online]. Available:
https://www.mdpi.com/1424-8220/22/7/2500

[11] S.-Y. Wang, O. Wang, R. Zhang, A. Owens, and A. A. Efros,
“CNN-generated images are surprisingly easy to spot... for now,”
2019, publisher: arXiv Version Number: 2. [Online]. Available:
https://arxiv.org/abs/1912.11035

[12] N. Hulzebosch, S. Ibrahimi, and M. Worring, “Detecting CNN-
Generated Facial Images in Real-World Scenarios,” CoRR, 2020,
publisher: arXiv Version Number: 1. [Online]. Available: https:
//arxiv.org/abs/2005.05632

[13] J. J. Bird and A. Lotfi, “CIFAKE: Image Classification and
Explainable Identification of AI-Generated Synthetic Images,” Mar.
2023, arXiv:2303.14126 [cs]. [Online]. Available: http://arxiv.org/abs/
2303.14126

[14] “NVlabs/ffhq-dataset,” Oct. 2023, original-date: 2019-02-04T15:35:08Z.
[Online]. Available: https://github.com/NVlabs/ffhq-dataset

[15] David Beniaguev, “Synthetic Faces High Quality (SFHQ) part 2.”
[Online]. Available: https://www.kaggle.com/dsv/4737578

[16] T. Developers, “TensorFlow,” Nov. 2023. [Online]. Available: https:
//zenodo.org/doi/10.5281/zenodo.4724125

[17] F. Chollet and others, “Keras,” 2015. [Online]. Available: https://keras.io
[18] D. Podell, Z. English, K. Lacey, A. Blattmann, T. Dockhorn, J. Müller,

J. Penna, and R. Rombach, “SDXL: Improving Latent Diffusion Models
for High-Resolution Image Synthesis,” 2023, publisher: arXiv Version
Number: 1. [Online]. Available: https://arxiv.org/abs/2307.01952

[19] “Accelerating Stable Diffusion XL Inference with JAX on Cloud TPU
v5e.” [Online]. Available: https://huggingface.co/blog/sdxl jax

[20] “Announcing Cloud TPU v5e and A3 GPUs in GA.”
[Online]. Available: https://cloud.google.com/blog/products/compute/
announcing-cloud-tpu-v5e-and-a3-gpus-in-ga

[21] P. Monasse, “Extraction of the Level Lines of a Bilinear Image,”
Image Processing On Line, vol. 9, pp. 205–219, Aug. 2019. [Online].
Available: https://www.ipol.im/pub/art/2019/269/?utm source=doi

[22] J. Yang, S. Xiao, A. Li, G. Lan, and H. Wang, “Detecting fake images by
identifying potential texture difference,” Future Generation Computer
Systems, vol. 125, pp. 127–135, Dec. 2021. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0167739X21002387

7


